Автор работы: Пользователь скрыл имя, 23 Ноября 2010 в 11:34, Не определен
Основная цель современного естествознания - познание мира, формирование нашего личного мировоззрения. Сейчас главная функция современного естествознания - технический прогресс. Современный мир сформировался в ряде факторов, основной из которых Научно-технический Прогресс (НТП). Основные особенности современного мира определяются НТП.
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОРБРАЗОВАНИЮ
ГОУ ВПО
«БрГУ»
Кафедра
физики
Реферат на тему:
«МИКРО,
МАКРО И МЕГАМИРЫ»
Выполнила:
Руководитель:
Братск, 2006
СОДЕРЖАНИЕ
Введение…………………………………………………………
1. Микромир: концепции современной физики ………………………………..4
1.1
Атомистическая концепция
1.2 Электроны и электронная оптика………………………………………...8
2. Макромир: концепции классического естествознания……………………..11
3. Мегамир:
современные астрофизические и
космологические концепции……………
3.1 Современные
космологические модели
3.2 Проблема происхождения и эволюции Вселенной……………….........21
3.3 Структура
Вселенной………………………………………………...
Заключение……………………………………………………
Список литературы…………………………………
ВВЕДЕНИЕ.
Основная цель современного естествознания - познание мира, формирование нашего личного мировоззрения. Сейчас главная функция современного естествознания - технический прогресс. Современный мир сформировался в ряде факторов, основной из которых Научно-технический Прогресс (НТП). Основные особенности современного мира определяются НТП.
Научно-технический
Прогресс - основа современной
цивилизации. Ему всего 300-350 лет.
Именно тогда возникла
НТП
вещь двоякая: у него есть
как положительные, так и
Отношение к нему тоже двоякое: несмотря на усиленное развитие Научно-технического Прогресса, на уровне культуры нет подобного роста. Даже, напротив, есть полярность. Одни говорят, что наука хорошо, другие - плохо.
Приведем результаты опроса по отношению к науке в Англии.
45 % - больше добра.
38 % - уравновешено.
11 % - больше зла.
В
настоящее время изучение естественной
науки сконцентрировано на трех главных
фронтах: 1) изучение очень большого - (занимается
астрономия, астрономы наблюдают все более
отдаленные объекты и пытаются составить
представление о том, как выглядит населяемый
нами мир в макрокосмосе); 2) изучение очень
малого - (представляет собой мир атомов.
Мы сами и все вокруг нас состоит из атомов,
для нас представляет первостепенный
интерес, как мы сложены); 3) изучение очень
сложного (эта область принадлежит биологии).
1.
Микромир: концепции
современной физики.
1.1 Атомистическая концепция строения материи.
Атомистическая гипотеза
В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном Превращении атомов одних элементов в атомы других элементов. Изучение радиоактивности было продолжено французскими физиками супругами Пьером и Марией Кюри, открывшими новые радиоактивные элементы полоний и радий.
История исследования строения атома началась в 1895 г. благодаря открытию Дж. Дж. Томсоном электрона - отрицательно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.
Исходя из огромной, по сравнению
с электроном, массы положительно
заряженной частицы,
В 1908 г. Э. Марсден и X. Гейгер, сотрудники Э. Резерфорда, провели опыты по прохождению альфа-частиц через тонкие пластинки из золота и других металлов и обнаружили, что почти все они проходят через пластинку, будто нет препятствия, и только 1/10000 из них испытывает сильное отклонение. По модели Дж. Томсона это объяснить не удавалось, но Э. Резерфорд нашел выход. Он обратил внимание на то, что большая часть частиц отклоняется на малый угол, а малая - до 150°. Э. Резерфорд пришел к выводу, что они ударяются о какое-то препятствие, это препятствие представляет собой ядро атома - положительно заряженную микрочастицу, размер которой (10-12 см) очень мал по сравнению с размерами атома (10-8 см), но в ней почти полностью сосредоточена масса атома.
Модель атома, предложенная Э. Резерфордом в 1911 г., напоминала солнечную систему: в центре находится атомное ядро, а вокруг него по своим орбитам движутся электроны.
Ядро имеет положительный заряд, а электроны - отрицательный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов — атом электрически нейтрален.
Неразрешимое противоречие этой модели заключалось в том, что электроны, чтобы не потерять устойчивость, должны двигаться вокруг ядра. В то же время они, согласно законам электродинамики, обязательно должны излучать электромагнитную энергию. Но в таком случае электроны очень быстро потеряли бы всю свою энергию и упали на ядро.
Следующее противоречие связано с тем, что спектр излучения электрона должен быть непрерывным, так как электрон, приближаясь к ядру, менял бы свою частоту. Опыт же показывает, что атомы излучают свет только определенных частот. Именно поэтому атомные спектры называют линейчатыми. Другими словами, планетарная модель атома Резерфорда оказалась несовместимой с электродинамикой Дж. К. Максвелла.
В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров.
Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физикой:
1) в каждом атоме существует несколько стационарных состояний (говоря языком планетарной модели, несколько стационарных орбит) электронов, двигаясь по которым электрон может существовать, не излучая;
2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.
Постулаты Бора объясняют устойчивость атомов: находящиеся в стационарных состояниях электроны без внешней на то причины не излучают электромагнитной энергии. Становится понятным, почему атомы химических элементов не испускают излучения, если их состояние не изменяется: объясняются и линейчатые спектры атомов: каждой линии спектра соответствует переход электрона из одного состояния в другое.
Теория атома Н. Бора позволяла дать точное описание атома водорода, состоящего из одного протона и одного электрона, достаточно хорошо согласующееся с экспериментальными данными. Дальнейшее же распространение теории на многоэлектронные атомы и молекулы столкнулось с непреодолимыми трудностями. Чем подробнее теоретики пытались описать движение электронов в атоме, определить их орбиты, тем большим было расхождение теоретических результатов с экспериментальными данными. Как стало ясно в ходе развития квантовой теории, эти расхождения главным образом были связаны с волновыми свойствами электрона. Длина волны движущегося в атоме электрона равна примерно 10-8 см, т.е. она того же порядка, что и размер атома. Движение частицы, принадлежащей какой-либо системе, можно с достаточной степенью точности описывать как механическое движение материальной точки по определенной орбите (траектории) только в том случае, если длина волны частицы пренебрежимо мала по сравнению с размерами системы. Другими словами, следует учитывать, что электрон не точка и не твердый шарик, он обладает внутренней структурой, которая может изменяться в зависимости от его состояния. При этом детали внутренней структуры электрона неизвестны.
Следовательно, точно описать структуру атома на основании представления об орбитах точечных электронов принципиально невозможно, поскольку таких орбит в действительности не существует. Вследствие своей волновой природы электроны и их заряды как бы размазаны по атому, однако не равномерно, а таким образом, что в некоторых точках усредненная по времени электронная плотность заряда больше, а в других - меньше.
Описание
распределения плотности
Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это последнее усилие описать структуру атома на основе классической физики, дополняя ее лишь небольшим числом новых предположений. Введенные Бором постулаты ясно показали, что классическая физика не в состоянии объяснить даже самые простые опыты, связанные со структурой атома. Постулаты, чужеродные классической физике, нарушили ее цельность, но позволили объяснить лишь небольшой круг экспериментальных данных.
Создавалось
впечатление, что постулаты Н. Бора
отражают какие-то новые, неизвестные
свойства материи, но лишь частично. Ответы
на эти вопросы были получены в результате
развития квантовой механики. Выяснилось,
что атомную модель Н. Бора не следует
понимать буквально, как это было вначале.
Процессы в атоме в принципе нельзя наглядно
представить в виде механических моделей
по аналогии с событиями в макромире. Даже
понятия пространства и времени в существующей
в макромире форме оказались неподходящими
для описания микрофизических явлений.
Атом физиков-теоретиков
все больше и больше
становился абстрактно-ненаблюдаемой
суммой уравнений.
1.2 Электроны и электронная оптика.
Подлинная
революция в микроскопии