Автор работы: Пользователь скрыл имя, 13 Ноября 2009 в 17:01, Не определен
1. Естественно-научные взгляды и методология Леонардо да Винчи.
2. Гелиоцентрическая система Мира Николая Коперника.
3. Галелео Галилей и рождение опытного естествознания.
4. Иоган Кеплер и открытие законов небесной механики.
5. Механика и методология Исаака Ньютона.
6. Успехи и трудности механической картины Мира.
7. Список используемой литературы
2.
Одинаковым явлениям
3.
Независимые и неизменные при
экспериментах свойства тел,
4.
Законы, индуктивно найденные из
опыта, нужно считать верными,
пока им не противоречат
Поскольку принципы устанавливаются путем исследования явлений природы, то вначале они представляют собой гипотезы, из которых путем логической дедукции получают следствия, проверяемые на практике. Поэтому метод принципов Ньютона является гипотетико-дедуктивный метод, который в современной физике является одним из основных для построения физических теорий. Метод Ньютона получил высокую оценку в методологических высказываниях многих ученых, в том числе А.Эйнштейна и С.И.Вавилова, но многие ученые также считали, что принципы и гипотезы выводятся прямо из опыта. Следовательно, прямо из опыта путем формальной логики выводится теория, которая имеет только цель связать одни опытные данные с другими.
Очень много вопросов и споров в истории физики вызвали взгляды Ньютона на пространство и время. Ньютон исходит из того, что в практике люди познают пространство и время путем измерения пространственных отношений между телами и временных отношений между процессами. Выработанные таким путем понятия пространства и времени Ньютон называет относительными. Он допускает, что в природе существуют не зависящие от этих отношений абсолютные пространство и время, как пу4стые вместилища тел и событий. Пространство и время по Ньютону, не зависят от материи и материальных процессов, что не согласуется с представлениями физики xx века. Поскольку материя у Ньютона является инертной и неспособной к самодвижению, а пустое абсолютное пространство безразлично к материи, то в качестве первоисточника движения он признает "первый толчок", то есть Бога.
Ньютон
- этот блестящий гений - указал, по словам
Эйнштейна, пути мышления, экспериментальных
исследований и практических построений,
создал гениальные методы и в совершенстве
владел ими, был исключительно изобретателен
в нахождении математических и физических
доказательств, был самой судьбой поставлен
на поворотном пункте умственного развития
человечества. Современная физика не отбросила
механику Ньютона, она только установила
границы ее применимости.
6.Успехи
и трудности МКМ
МКМ складывалась под влиянием метафизических материалистических представлений о материи и формах ее существования. Основополагающими идеями этой картины Мира являются классический атомизм и механицизм. Ядром МКМ является механика Ньютона, в любой физической теории довольно много понятий, но есть основные, в которых проявляется специфика этой теории, ее базис, ее мировоззренческий аспект. К таким понятиям относятся: материя, движение, пространство, время, взаимодействие. Материя - это вещество, состоящее из мельчайших, далее неделимых, абсолютно твердых движущихся частиц (атомов), т.е. в МКМ были приняты дискретные представления о материи. И поэтому важнейшими понятиями в механике были понятия материальной точки и абсолютно твердого тела, материальная точка - это тело, размерами которого в условиях данной задачи можно пренебречь. Абсолютно твердое тело - это система материальных точек, расстояние между которыми остается неизменным.
Пространство. Аристотель отрицал существование пустого пространства, связывая пространство, время и движение. Атомисты же признавали атомы и пустое пространство, в котором атомы движутся. Ньютон рассматривает два вила пространства: относительное, с которым люди знакомятся путем измерения пространственных отношений между телами, и абсолютное - это пустое вместилище тел, оно не связано с временем и его свойства не зависят от наличия или отсутствия в нем материальных объектов. Оно является трехмерным, непрерывным, бесконечным, однородным, изотропным. Пространственные отношения описываются в МКМ геометрией Евклида.
Время. Ньютон рассматривает два вида времени: относительное и абсолютное. Относительное время познают в процессе измерений. "Абсолютное, истинное, математическое время само по себе и по самой своей сущности, без всякого отношения к чему - либо внешнему, протекает равномерно и иначе называется длительностно". Таким образом, время - пустое вместилище событий, не зависящее ни от чего, оно течет в одном направлении (от прошлого к будущему), оно непрерывно, бесконечно и везде одинаково (однородно).
Движение. В МКМ признавалось только механическое движение, т.е. изменение положения тела в пространстве с тече6нием времени. Считалось, что любое сложное движение можно представить как сумму пространственных перемещений (принцип суперпозиции). Движение любого тела объяснялось на основе трех законов Ньютона.
Следует заметить, что в механики вопрос о природе сил не имел принципиального значения. Для ее законов и методологии было достаточно, что сила - это количественная характеристика механического взаимодействия тел. Просто она стремилась свести все явления природы к действию сил притяжения и отталкивания, встретив на этом пути непреодолимые трудности.
Важнейшими
принципами МКМ являются принцип
относительности Галилея, принцип
дальнодействия и принцип причинности.
Принцип относительности
В МКМ было принято, что взаимодействие передается мгновенно и промежуточная среда в передаче взаимодействия участия не принимает. Это положение и носит принцип дальнодействия.
Как известно, беспричинных явлений нет, всегда можно выделить причину и следствие, причина и следствие взаимосвязаны, и влияют друг на друга. Следствие может быть причиной другого явления. "Всякое имеющее место явление связано с предшествующим на основании того очевидного принципа, что оно не может возникнуть без производящей причины". В природе могут быть и более сложные связи:
1.У одного и того же следствия могут быть разные причины, например, превращение насыщенного пара в жидкость за счет повышения давления или за счет понижения температуры.
2.В тепловом движении, например, скорость, кинетическая энергия, импульс отдельной частицы изменяются без изменения макропараметров (температуры, давления, объема), характеризующих систему в целом. В результате развития термодинамики и статистической физики был открыт ряд важных законов, в том числе сохранения и превращения энергии для тепловых процессов (первое начало термодинамики) и закон возрастания энтропии в изолированных системах (второе начало термодинамики).
Термодинамика - это раздел физики, который изучает закономерности перехода энергии из одного вида в другой. Первый закон термодинамики гласит: Тепло, сообщенной системе, расходуется на изменение ее внутренней энергии и на совершение системой работы против внешних сил. С точки зрения первого начала термодинамики в системе могут протекать любые процессы, лишь бы не нарушался закон сохранения и превращения энергии.
Все реальные процессы являются необратимыми, поскольку наличие сил трения обязательно приводит к переходу упорядоченного движения в неупорядоченное. Для характеристики состояния системы и направленности протекания процессов и была введена в физике особая функция состояния - энтропия. Оказалось, что энтропия замкнутой системы не может убывать. Замкнутость системы означает, что в ней процессы протекают самопроизвольно, без внешнего влияния. В случае обратимых процессов (а их в реальности нет) энтропия замкнутой системы остается неизменной, в случае необратимых процессов - она возрастает. Таким образом, реально энтропия замкнутой системы может только возрастать, это и есть закон возрастания энтропии (одна из формулировок второго начала термодинамики). Этот закон имеет большое значение для анализа процессов в замкнутых макроскопических системах. Статистический характер этого закона означает его большую фундаментальность по сравнению с динамическими законами.
В современной физике вероятностно-статистические идеи получили широчайшее распространение (статистическая физика, квантовая механика, теория эволюции, генетика, теория информации, теория планирования и т.д.). Несомненно, и их практическая ценность: контроль качества продукции, проверка работы того или иного объекта, оценка надежности агрегата, организация массового обслуживания. Но ни термодинамика, ни статистическая физика не сумели коренным образом изменить представления МКМ, разрушить ее: МКМ видоизменилась и расширила свои границы. Развитие физики до середины xlxв шло в основном в рамках ньютоновских воззрений, но все больше новых открытий, особенно в области электрических и магнитных явлений, не вписывались в рамки механических представлений, т.е. МКМ становилась тормозом для новых теорий, и назревала необходимость перехода к новым воззрениям на материю и движение. Несостоятельной оказалась не сама МКМ, а ее исходная философская идея - механицизм. В недрах МКМ стали складываться элементы новой - электромагнитной - картины Мира.
Все сказанное о механической картине Мира можно подытожить следующими выводами:
1.Впечатляющие
успехи механики привели к
механицизму и представление
о механической сущности Мира
стало основой мировоззрения.
Неделимые атомы составляли
2.В
рамках МКМ развивалась
На основе электрических магнитных "жидкостей" механика стремилась объяснить электрические и магнитные явления, на основе флюида "жизненная сила" пыталась понять работу живых организмов.
3.Анализ
работы тепловых машин привел
к возникновению термодинамики, важнейшим
достижением которой явилось открытие
закона сохранения и превращения энергии.
Но в МКМ все виды энергии сводились к
энергии механического движения. Макромир
и микромир подчинялись одним и тем же
механическим законам. Признавались только
количественные изменения. Это означало
отсутствие развития, т. е. Мир считался
метафизическим.
Список
используемой литературы:
1. Дягилев
Ф.М. "Концепции современного
2. Солопов Е.Ф. "Концепции современного естествознания"