Автор работы: Пользователь скрыл имя, 30 Августа 2011 в 01:39, контрольная работа
2. Специфика естественнонаучного познания
4. Эволюция естественнонаучной картины мира
5. Системный подход в естествознании
8. Фундаментальные физические взаимодействия
11. Внутреннее строение и геологическое развитие земли
13. Сциентизм и антисциентизм как символы оценки социальной роли науки
Контрольные
вопросы по КСЕ
2. Специфика естественнонаучного познания
Естествознание является до известной степени основой всякого знания - и естественно-научного, и технического, и гуманитарного.
Основные цели естествознания:
- находить сущность явлений природы, их законы и на этой основе предвидеть или создавать новые явления;
- раскрывать возможность использования на практике познанных законов природы.
Современная наука охватывает огромную область знаний - около 15 тысяч дисциплин, которые в различной степени отдалены друг от друга. В ХХ веке научная информация за каждые 10‑15 лет удваивалась. Если в 1900 году существовало около 10 тысяч научных журналов, то в настоящее время - несколько сотен тысяч. Более 90 % ученых, когда-либо живших на Земле, - наши современники, их число в мире к концу ХХ века составило свыше пяти миллионов человек.
Естественные науки являются составной частью естественнонаучной культуры. Естественнонаучная культура – это:
- совокупный исторический объем знания о природе и обществе;
- объем знания о конкретных видах и сферах бытия, который в сокращенно-концентрированной форме актуализирован и доступен изложению;
- усвоенное человеком содержание накопленного и актуализированного знания о природе и обществе.
Специфика естественнонаучной культуры: знания о природе отличаются высокой степенью объективности и достоверности (истинности). Кроме того, это глубоко специализированное знание.
Естественнонаучные знания дают фундаментальные представления о структуре окружающего мира и месте в нем человека, а гуманитарные знания, являясь логическим продолжением естественнонаучных сведений, строятся на этом фундаменте.
Познание, как и любой другой вид деятельности, предполагает применение определенной совокупности тех или иных приемов и операций, ведущих так или иначе к достижению той или иной цели. Такая система приемов обычно и называется методом. Таким образом, метод научного познания - это совокупность приемов и операций, регулирующих действия с изучаемыми объектами.
Метод познания, по сути своей, выражает целенаправленность, планомерность процесса познания как процесса, программно осуществляемого. Он является важным инструментом научного познания, двигателем науки, средством ее развития и обогащения новыми результатами.
В идеальном случае метод включает следующие компоненты:
1. сформулированную цель, задачу (проблемный аспект);
2. описание объективной ситуации, в рамках которой решается задача (онтологический аспект);
3. процедуру - перечень операций, необходимых для достижения цели в заданных условиях (процедурный аспект).
К методу научного познания предъявляется ряд требований:
- Детерминированность метода, то есть его обусловленность закономерностями как самого объекта, так и познавательной деятельности. Детерминированность метода исключает произвольный набор приемов и операций, но не исключает активности субъекта в использовании метода.
- Заданность метода целью исследования, что вытекает из обусловленности метода закономерностями самой деятельности. Данное требование делает необходимым соответствие всех компонентов метода цели исследования и подчеркивает активность субъекта познания.
- Результативность и надежность метода: он должен быть таким. чтобы мог давать результат с высокой степенью надежности.
- Экономичность метода, т.е. затраты на его создание и использование должны быть всегда меньше величины, окупаемой результатами исследования, что показывает обусловленность метода кадровыми, экономическими и социально-организационными факторами.
- Ясность и эффективная распознаваемость метода, Метод должен быть таким, чтобы им мог воспользоваться при соответствую идей подготовке любой человек, пожелавший сделать это.
- Воспроизводимость метода, т.е. возможность его использования неограниченное число раз, а это зависит от воспроизводимости всех компонентов данного метода.
-
Обучаемость методу, основой чего являются
воспроизводимость, ясность и распознаваемость
метода.
4. Эволюция естественнонаучной картины мира
Естественнонаучная картина мира это – множество теорий в совокупности описывающих известный человеку природный мир, целостная система представлений об общих принципах и законах устройства мироздания. Поскольку картина мира это системное образование, ее изменение нельзя свести ни к какому единичному, пусть и самому крупному и радикальному открытию. Как правило, речь идет о целой серии взаимосвязанных открытий, в главных фундаментальных науках. Эти открытия почти всегда сопровождаются радикальной перестройкой метода исследования, а так же значительными изменениями в самих нормах и идеалах научности.
В истории развития науки можно выделить три четко и однозначно фиксируемых радикальных смен научной картины мира, научных революций, обычно их принято персонифицировать по именам трех ученых сыгравших наибольшую роль в происходивших изменениях.
Аристотелевская (VI-IV века до нашей эры) в результате этой научной революции возникла сама наука, произошло отделение науки от других форм познания и освоения мира, созданы определенные нормы и образцы научного знания. Наиболее полно эта революция отражена в трудах Аристотеля. Он создал формальную логику, т.е. учение о доказательстве, главный инструмент выведения и систематизации знания, разработал категориально понятийный аппарат. Он утвердил своеобразный канон организации научного исследования (история вопроса, постановка проблемы, аргументы за и против, обоснование решения), дифференцировал само знание, отделив науки о природе от математики и метафизики
Ньютоновская научная революция (XVI-XVIII века), Ее исходным пунктом считается переход от геоцентрической модели мира к гелиоцентрической, этот переход был обусловлен серией открытий, связанных с именами Н. Коперника, Г. Галилея, И. Кеплера, Р. Декарта, И. Ньютон, подвел итог их исследованиям и сформулировал базовые принципы новой научной картины мира в общем виде. Основные изменения:
- Классическое естествознание заговорило языком математики, сумело выделить строго объективные количественные характеристики земных тел (форма величина, масса, движение) и выразить их в строгих математических закономерностях.
- Наука Нового времени нашла мощную опору в методах экспериментального исследования, явлений в строго контролируемых условиях.
- Естествознания этого времени отказалось от концепции гармоничного, завершенного, целесообразно организованного космоса, по их представления Вселенная бесконечна и объединена только действием идентичных законов.
Эйнштейновская революция (рубеж XIX-XX веков). Ее обусловила сери открытий (открытие сложной структуры атома, явление радиоактивности, дискретного характера электромагнитного излучения и т.д.). В итоге была подорвана, важнейшая предпосылка механистической картины мира – убежденность в том, что с помощью простых сил действующих между неизменными объектами можно объяснить все явления природы.
Фундаментальные основы новой картины мира:
- общая и специальная теория относительности (новая теория пространства и времени привела к тому, что все системы отсчета стали равноправными, поэтому все наши представления имеют смысл только в определенной системе отсчета. Картина мира приобрела релятивный, относительный характер, видоизменились ключевые представления о пространстве, времени, причинности, непрерывности, отвергнуто однозначное противопоставление субъекта и объекта, восприятие оказалось зависимым от системы отсчета, в которую входят и субъект и объект, способа наблюдения и т.д.)
- квантовая механика (она выявила вероятностный характер законов микромира и неустранимый корпускулярно-волновой дуализм в самых основах материи). Стало ясно, что абсолютно полную и достоверную научную картину мира не удастся создать никогда, любая из них обладает лишь относительной истинностью.
Позднее в рамках новой
Три
глобальных революции предопределили
три длительных периода развития
науки, они являются ключевыми этапами
в развитии естествознания. Это не означает,
что лежащие между ними периоды эволюционного
развития науки были периодами застоя.
В это время тоже совершались важнейшие
открытия, создаются новые теории и методы,
именно в ходе эволюционного развития
накапливается материал, делающий неизбежной
революцию. Кроме того, между двумя периодами
развития науки разделенными научной
революцией, как правило, нет неустранимых
противоречий, согласно сформулированному
Н. Бором, принципу соответствия, новая
научная теория не отвергает полностью
предшествующую, а включает ее в себя в
качестве частного случая, то есть устанавливает
для нее ограниченную область применения.
Уже сейчас, когда с момента возникновения
новой парадигмы не прошло и ста лет многие
ученые высказывают предположения о близости
новых глобальных революционных изменений
в научной картине мира.
5. Системный подход в естествознании
Системный подход является одной из попыток вырваться за пределы однозначности научных знаний. Это новый этап в развитии методов познания мира, дополнительный к принципам механистического подхода. Он является попыткой оценить по достоинству роль целостности. В основе системности в природе лежит ее свойство быть одновременно единым и неделимым целым и в то же время обладать свойством множественности.
«Слово «система» в переводе с греческого означает «целое, составленное из частей». Под системой понимают совокупность явлений, элементов, находящихся в определенных отношениях и связях между собой и образующих определенную целостность. Различают простые и сложные системы Фурсенко.
Можно
считать систему сложной, если ее
поведение содержит акт решения,
определяемый как выбор альтернатив
с помощью какого-либо алгоритма,
например случайного. Известно, что
в свойствах и поведении
Наиболее общей закономерностью сложных систем является закон подобия части и целого: часть является миниатюрной копией целого, а потому все части одного уровня иерархии систем похожи друг на друга.
Для биосистем в формулировке Мюллера и Геккеля закон подобия части и целого известен как биогенетический закон: онтогенез (индивидуальное развитие особи) повторяет филогенез (историческое развитие вида). Ярким подтверждением данного закона является эмбриогенез: развитие эмбриона повторяет формы, через которые данный вид прошел в процессе своей эволюции. «Для человека этот закон можно, вероятно, дополнить: ноогенез (формирование мышления) каждого человека повторяет антропогенез, то есть исторический процесс формирования мыслительного аппарата всего человечества.
Любая система характеризуется своей «структурой» и «поведением». Структура - это строение и внутренняя форма организации системы, выступающая как единство устойчивых взаимосвязей между ее элементами, а также законов данных взаимосвязей. Поведение определяет внешнюю сторону системы (текстуру), в соответствии с которой любая система может входить в качестве элемента в состав других систем более высокого уровня. Таким образом, одним из основных свойств систем является их иерархичность (иерархия - расположение ступенчатым рядом), в соответствии с которым любая система сама может являться элементом более общей системы, в то же время каждый элемент системы сам в свою очередь может являться системой. Иерархичность систем обеспечивает их устойчивость и неуязвимость.
Современный уровень знаний позволяет представить иерархию природных систем в виде следующей цепочки: элементарные частицы - атомы - молекулы - клетки - многоклеточные - экосистемы - биосфера - космическое тело - звездная система - галактика - Вселенная. Между уровнями приведенной иерархии биосистем не существует четких границ или разрывов, здесь обнаруживается масса промежуточных переходных форм, например, молекула - макромолекула (полимер) - сложномолекулярный комплекс (вирус) - коацерватная капля - клетка. По большому счету четкой границы нет даже между отдельным организмом и экосистемой: организм, изолированный от экосистемы, не может жить долго, так же как изолированный орган не может жить долго без тела, в котором он изначально зародился.