Автор работы: Пользователь скрыл имя, 30 Мая 2010 в 18:44, Не определен
Вопрос 1. Какие химические элементы являются самыми главными в космическом пространстве, какие - для жизни и почему?
Катализ играет решающую роль в процессе перехода от химических систем к биологическим системам, то есть на предбиотической стадии эволюции. Реакции сопровождаются образованием специфических пространственных и временных структур за счет поступления новых и удаления использованных химических элементов. В химических реакциях важную роль играют каталитические процессы. Роль этих процессов усиливается по мере усложнения состава и структуры химических систем.
Переход даже к простейшим формам жизни предполагает также особый дифференцированный отбор лишь таких химических элементов и их соединений, которые являются основным строительным материалом для образования биологических систем. В связи с этим достаточно отметить, что из более ста химических элементов лишь шесть, названых органогенами, служат основой для построения живых систем.
Такими органогенами являются углерод, водород, кислород, азот, фосфор и сера.
Негосударственное образовательное учреждение
«Столичная
Финансово- гуманитарная
Академия»
Факультет Психологии, педагогики и права
Специальность
«Юриспруденция»
Контрольная
работа
По дисциплине: «Концепция Современного Естествознания»
Вариант № 3
Студентка : 1 курса (ССО)
Касаткина
А.Е.
Преподаватель:
Вопрос 1. Какие химические элементы являются самыми главными в космическом пространстве, какие - для жизни и почему?
Катализ играет решающую роль в процессе перехода от химических систем к биологическим системам, то есть на предбиотической стадии эволюции. Реакции сопровождаются образованием специфических пространственных и временных структур за счет поступления новых и удаления использованных химических элементов. В химических реакциях важную роль играют каталитические процессы. Роль этих процессов усиливается по мере усложнения состава и структуры химических систем.
Переход даже к простейшим формам жизни предполагает также особый дифференцированный отбор лишь таких химических элементов и их соединений, которые являются основным строительным материалом для образования биологических систем. В связи с этим достаточно отметить, что из более ста химических элементов лишь шесть, названых органогенами, служат основой для построения живых систем.
Такими
органогенами являются углерод, водород,
кислород, азот, фосфор и сера.
Вопрос 2. Рассмотрите этапы глобальной эволюции Земли.
Первый этап развития земной жизни пока полностью не ясен. Однако, начиная со времени 3,6–3,5 млрд. лет назад уже известны строматолитовые отложения. Так, в серии Онвервахт Южной Африки (3,5–3,3 млрд. лет) строматолиты имеют кремневый состав и слагают небольшие по мощности и протяжённости слои, залегающие среди пластов кремней в вулканогенных породах зеленокаменного пояса (Семихатов и др., 1999). В середине архея земная жизнь уже характеризовалась несколько большим разнообразием и, вероятно, полным господством термофильных прокариотных форм, в основном архиабактерий с халькофильной и сидерофильной специализацией. Вероятнее всего источниками энергии этим примитивным формам жизни тогда служили хемогенные реакции типа тех, которые в настоящее время используются термофильными бактериями в горячих гидротермах („чёрных курильщиках“) срединно-океанических хребтов, а также другие анаэробные хемогенные реакции.
В связи с тем, что в архейской конвектирующей мантии над зонами дифференциации земного вещества концентрация свободного железа была пониженной , в архейской атмосфере в небольших количествах мог присутствовать и кислород. Кислород тогда освобождался благодаря фотодиссоциации паров воды жёстким излучением Солнца и жизнедеятельности цианобактерий, которые в то время уже появились, поскольку в архее встречаются строматолиты.
В середине архея, около 3,1 млрд. лет назад, масса воды в гидросфере Земли увеличилась так, что отдельные морские бассейны стали сливаться друг с другом в единый Мировой океан и его поверхность тогда же перекрыла гребни срединно-океанических хребтов. В результате несколько активизировались процессы гидратации океанической коры и увеличилась поставка в океаническую кору карбонатов кальция. В свою очередь, это должно было привести в конце архея к заметному увеличению отложений карбонатных осадков (например, мраморов и кальцифиров Слюдянской серии в Забайкалье), а также строматолитовых отложений в зеленокаменных поясах того времени, хотя их доля в вулканогенных образованиях таких поясов по-прежнему оставалась незначительной (Семихатов и др., 1999).
Второй радикальный геолого-биологический рубеж был связан с выделением земного ядра и резким снижением тектонической активности Земли на рубеже архея и протерозоя (около 2,6 млрд. лет назад). Именно тогда в океанической коре впервые возник серпентинитовый слой — главный и постоянно обновляемый резервуар связанной воды в земной коре. Известно, что гидратация ультраосновных пород сопровождается поглощением углекислого газа и связыванием его по реакциям в карбонатах. Этим следует объяснять сравнительно быстрое удаление из атмосферы углекислого газа и падение общего атмосферного давления с 6 атм и температур с +50…+60°С в архее приблизительно до 1 атм и +6… +7°С в начале раннего протерозоя , что привело к резкому похолоданию климата и возникновению (около 2,5 млрд. лет назад) первого в истории Земли ледникового периода.
Однако надо учитывать, что в конце архея и начале протерозоя в мантию Земли из центральных областей поднялось много первичного вещества с высокой концентрацией в нём металлического железа. Поэтому масса железа, поступавшего в раннем протерозое через рифтовые зоны Земли в океаны, значительно превосходила возможную генерацию кислорода в биосфере раннего протерозоя. Отсюда следует, что в атмосфере раннего протерозоя было исключительно мало кислорода, скорее всего не выше 10 –6 атм, а во время массового отложения джеспилитов, около 2,2–2,0 млрд. лет назад, и того ниже (вероятно, около 10 –8—10 –9 атм), но в отличие от архейской атмосферы в ней уже было не более нескольких мбар углекислого газа. Это позволяет предположить, что именно в эпохи массового отложения железорудных формаций, вероятно, появились и железобактерии, потребляющие кислород благодаря восстановлению трёхвалентного железа до фазы магнетита. Недавно существование таких архиобактерий было доказано экспериментально (Слоботкин и др., 1995; Zavarzin, 1996). Не исключено, что дефицит кислорода мог активизировать и симбиотические процессы в жизни простейших бактерий, образование в них митохондрий и клеточных ядер, послуживших позже основой появления эвкариотных форм жизни.
Таким образом, атмосфера Земли в раннем протерозое, около 2,5–2,0 млрд. лет назад, в основном состояла только из азота, лишь с небольшими добавками водяного пара, аргона и углекислого газа.
Такие резкие изменения условий обитания не могли не сказаться на биоте того времени. Сообщество термофильных прокариот должно было уступить место более холодолюбивым бактериям и микроводорослям. С этими событиями в биоте океанов была связана ещё одна революционная перестройка: уже в начале раннего протерозоя широко распространились фотосинтезирующие микроорганизмы — сине-зелёные водоросли и произошёл резкий в геологической истории рост обилия строматолитов (Семихатов и ;др., 1999), пришедшийся на эпоху массового отложения железорудных формаций
В начале раннего протерозоя в интервале возрастов 2,6 и 2,5 млрд. лет, но уже после возникновения серпентинитового слоя океанической коры, когда резко падала концентрация углекислого газа в атмосфере, а в гидросферу поступали огромные массы магнезиально-кальциевых карбонатов, возникавших по реакциям, должны были образоваться мощнейшие толщи хемогенных и органогенных доломитов.
В
среднем протерозое, т. е. после окончания
эпохи массового отложения
Не исключено, что в среднем протерозое произошло и заселение суши бактериальной флорой, о чём, в частности, могут свидетельствовать впервые появившиеся тогда красноцветные коры выветривания (Анатольева, 1978). В этой связи необходимо отметить, что связывание азота в органическом веществе таких бактерий и дальнейшее захоронение соединений азота в осадочных толщах должно было приводить к постепенному снижению общего давления земной атмосферы. Следствием такого снижения атмосферного давления стало постепенное похолодание климата в конце протерозоя (см. раздел 10.5). В результате этого, а также благодаря дрейфу части континентов Гондваны и Лавразии в высокие широты (см. рис. 8.8) в позднем рифее-венде, а также в раннем и среднем палеозое (см. рис. 8.9) наблюдалась новая эпоха оледенений.
Переход атмосферы на рубеже архея и протерозоя от химически активного углекислотного состава к нейтральному, безусловно, должен был сказаться и на организации земной жизни. По-видимому, с этим следует связывать появление в протерозое принципиально новых форм эвкариотных одноклеточных организмов и водорослей с чётко обособленным ядром и другими органами. Отсюда видно, что и второй крупный тектоно-геохимический рубеж докембрия, радикально изменивший всю геодинамику Земли, одновременно столь же резко изменил экологическую обстановку на Земле и предопределил появление более совершенных эвкариотных форм земной жизни. Это, а также последующее развитие биоминерализации, рост биологической продуктивности и прогрессирующая колонизация бентали повлекли за собой существенные изменения в характере седиментогенеза.
Суммарная биомасса фитопланктона, генерирующего кислород в океане, определяется количеством растворённых в его водах соединений фосфора (Шопф, 1982), но его концентрация в океанских водах всегда оставалась равновесной по отношению к базальтам океанской коры и близкой к современной. Отсюда следует, что масса океанского фитопланктона увеличивалась со временем приблизительно пропорционально росту массы воды в океане (см. рис. 9.3, кривая 2). Если бы не существовало процессов связывания кислорода в породах, то и его накопление в атмосфере Земли подчинялось бы этой же закономерности.
Рассматривая развитие жизни в истории Земли, важно обратить внимание специалистов на ранее не учитывавшееся обстоятельство — на присутствие в докембрийской мантии свободного (металлического) железа. Вместе с мантийным веществом это железо попадало в рифтовые зоны срединно-океанических хребтов, где оно на контакте с водой окислялось до растворимой двухвалентной гидроокиси (вероятно, в форме бикарбоната), разносившейся далее по всему океану. Но, как известно, двухвалентная гидроокись железа является активным поглотителем кислорода. Поэтому есть все основания полагать, что большая часть кислорода, продуцировавшегося фитопланктоном докембрия, тогда быстро расходовалась на окисление двухвалентной гидроокиси железа до трёхвалентного состояния (например, в форме гётита). Этим следует объяснять не только формирование мощнейших залежей железных руд докембрия, но и очень низкое парциальное давление кислорода в атмосфере докембрия. В процессе химико-плотностной дифференциации железо вместе с его окислами постепенно переходило из мантии в земное ядро, однако полностью оно исчезло из мантии только на рубеже протерозоя и фанерозоя (см. рис. 4.10). После же полного перехода металлического железа из мантии в ядро около 600 млн. лет назад, исчез главный „потребитель“ кислорода на Земле, и этот живительный газ начал быстро накапливаться в атмосфере.
Кроме того, мощным механизмом поглощения кислорода является и процесс разложения органических остатков после смерти самих организмов. Отсюда видно, что только захоронение органического углерода в осадках в форме углеводородов или углей ведёт к накоплению кислорода в атмосфере. В протерозое и раннем палеозое наземной растительности ещё не существовало, и поэтому до середины палеозоя не было угленакопления, но консервация углеводородов в океанических осадках, битумных и чёрных сланцах происходила уже в докембрии. Причём следует ожидать, что мощность этого процесса в протерозое была даже большей, чем в фанерозое, поскольку тогда в океанах господствовала восстановительная обстановка и органические остатки фитопланктона консервировались в осадках без окисления. К настоящему времени, правда, древние бассейны нефтегазонакопления практически не сохранились, а были графитизированы или уничтожены последующими тектоническими процессами. Поэтому их количественное распространение в современных геологических разрезах не может служить критерием оценки интенсивности этих процессов в глубокой древности, хотя шунгиты, графитизированные породы и чёрные сланцы в докембрии распространены достаточно широко. Из сказанного следует, что скорость генерации кислорода в протерозое была вполне соизмеримой с современной. Но в докембрии почти весь кислород, освобождавшийся тогда благодаря жизнедеятельности фитопланктона, поглощался процессом окисления железа.
В результате парциальное давление атмосферного кислорода, остававшееся низким почти до конца протерозоя, в венде стало быстро повышаться. После перехода парциальным давлением кислорода точки Пастера (~ 10–2 современного уровня) в конце протерозоя и в венде произошла ещё одна весьма радикальная перестройка жизни на Земле. Биологическая эволюция на это ответила буквально взрывом возникновения новых форм жизни на Земле, появлением многоклеточных водорослей и, главное, возникновением метазоа — многоклеточных представителей царства животных, метаболизм которых уже был построен на потреблении кислорода из внешней среды. Кроме того, в начале кембрия появились скелетные организмы и практически все известные и сегодня типы организмов.
Таким образом, и третий резкий геолого-биологический рубеж на переходе от протерозоя к фанерозою ярко отразился в геологической истории Земли и радикальным образом изменил экологическую обстановку на её поверхности: отныне земная атмосфера из восстановительной или нейтральной превратилась в окислительную. В этой новой ситуации уже наиболее эффективными оказались те формы жизни, обмен веществ которых был построен на реакциях окисления органических веществ, синтезируемых царством растений.