Контрольная работа по "Концепция современного естествознания"

Автор работы: Пользователь скрыл имя, 03 Апреля 2011 в 11:45, контрольная работа

Описание работы

1.4.Дайте общую характеристику кометам. Назовите наиболее известные из них. Период обращения Сатурна вокруг Солнца равен 29,46 земного года, а Марса – 1,88 земного года. На каком расстоянии от Солнца находится Сатурн, если Марс удален в среднем на 228 млн км?

Файлы: 1 файл

Doc1.doc

— 121.50 Кб (Скачать файл)
 

 

4.4.Каковы модели  развития Вселенной? Какие наблюдения  подтвердили модель Большого Взрыва? Какие эмпирические подтверждения расширения Вселенной? Что означает “стационарность” и “нестационарность” Вселенной, какова природа реликтового излучения?

Ответ:

Наука изучающая  строение и эволюцию вселенной называется космологией.

    Первую  теорию о развитии Вселенной предложил  Альберт Энштейн в 1917 году в качестве следствия  его формулировки общей  теории относительности. Согласно этой теории Вселенная статична и не изменяется со временем. Но в 1922 году А. Фридман опроверг данную теорию, завив что искривленное пространство не может быть стационарным, оно должно или расширяться или сжиматься.

    Таким образом, появилась теория расширяющейся или нестационарной Вселенной. Автором этой теории считается аббат Ж. Леметр, причем данная теория была доказана экспериментально. Экспериментально расширение вселенной выполняется виде закона Хаббла, который связывает красное смещение галактик, описанное В.Слайфером, с расстоянием до них линейным образом. При этом расширение не происходит относительно какого – либо центра. Наглядно это можно показать простым физическим опытом: если на воздушный шарик нанести пятна, обозначающие галактики и надуть его то расстояние между  пятнами – галактиками будет возрастать и притом тем быстрее чем дольше они расположены друг от друга.

    Дальнейшее  развитие теория расширяющейся Вселенной  получила в теории Г. Гамова, который разработал так называемую теорию «горячей» Вселенной, в которой основное внимание уделяется состоянию вещества и различным физическим процессам, происходящим на различных этапах расширения Вселенной. Иначе эта модель называется космологией Большого Взрыва. Само расширение  Вселенной является естественным следствием теории Большого взрыва, кроме того эту теорию доказывает распределение гелия во Вселенной,  появление которого стало результатом ядерных реакций вызванных Большим взрывом.

      Но наиболее важным подтверждением теории Большого взрыва стало открытие реликтового излучения. Согласно теории Гамова и по законам термодинамики, излучение должно находиться в равновесии с разогретым веществом. После нуклеосинтеза излучение должно остаться и продолжить движение вместе с веществом в расширяющейся Вселенной и сохраниться до нашего времени, но его температура должна уменьшиться. Гамов предсказывал наличие фонового излучения, которое должно быть изотропным и иметь температуру близкую к 0К, или до 10К.

    В противовес теории расширяющейся Вселенной  была представлена теория стационарной Вселенной, разработанная Ф. Хойллом. Главная идея этой теории заключается в следующем: по мере того как галактики удаляются друг от друга при хаббловском расширении, в увеличивающемся пространстве между ними образуется новая материя. Вновь образованная материя со временем самоорганизуется в галактики, которые, в свою очередь, будут удаляться друг от друга, высвобождая пространство для образования новой материи. Таким образом, наблюдаемое расширение было согласовано с понятием «стационарной» Вселенной, сохраняющей свою общую плотность и не имеющей единственной точки образования (наличие которой предполагает теория Большого взрыва). Но благодаря открытию реликтового излучения эта теория была поставлена под сомнение.

 

       5.4. Модели идеального и реального газа. Какими параметрами описывается состояние газа? Определите температуру идеального газа, если средняя кинетическая энергия поступательного движения его молекул равна 7,87*10-21 Дж.

Ответ:

    Идеальный газ – это газ молекулы, которого пренебрежительно малы и не берутся  в принимаются за материальные точки, взаимодействующие на расстоянии. Частицы газа являют собой наилучший пример неупорядоченной совокупности однородных объектов (фр. gaz, греч. chaos — хаос).

    Модель  реального газа отличается от модели идеального газа учетом объёма самих молекул и их взаимодействия. При взаимодействии молекул уменьшается давление и поэтому каждая молекула при столкновении тормозится притяжением других. Эта модель была предложена Ван – Дер – Ваальсом.

    Состояние газа описывается следующими параметрами:

  • Температура. Под этим параметром понимают среднюю кинетическую энергию движения молекул газа.
  • Удельный объём представляет собой выраженный в кубических метрах объём одного килограмма массы газа. Величина обратная удельному объёму называется плотностью и представляет собой выраженную в килограммах массу 1 м3.
  • Давление. Под этим параметром понимают средний результат ударов о стенки сосуда молекул составляющих газ. Измеряют давление в паскалях.

    Данные  параметры находятся в зависимости друг от друга.

  Практическое  задание:

       Определите  температуру идеального газа, если средняя кинетическая энергия поступательного движения его молекул равна 7,87*10-21 Дж.

 

  Ответ:

        Средняя кинетическая энергия поступательного движения молекулы газа при тепловом равновесии одинакова для всех молекул газов, находящихся в тепловом контакте. Значит,Ек.ср обладает основным свойством температуры и не зависит от внутренней структуры молекул. И ее можно принять за меру температуры газа или тела, находящегося в тепловом контакте с газом Ек.ср=(3/2)kT, где k= 1,38*10-23 Дж\К и является постоянной Больцмана. 

    Исходя  из этой формулы получаем:

    Т= Ек.ср/(3/2)k=7,87*10-21ДЖ/(3/2)1,38*10-23ДЖ/К= 380,19 К 

 

       6.4. Поясните понятия энтропии и  термодинамической вероятности.  В чем состоит принцип Больцмана, каково значение этого принципа в современном естествознании?

Ответ:

       Энтропия (от греч. ἐντροπία — поворот, превращение)(S)— понятие, впервые введённое Клаузиусом в термодинамике для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального.  Данная величина, определённая как сумма приведённых теплот, является функцией состояния и остаётся постоянной при обратимых процессах, тогда как в необратимых — её изменение всегда положительно. Иными словами можно сказать что энтропия это мера беспорядка в системах.

       Термодинамическая вероятность(W) – это число микросостояний которыми может быть заменено макроскопическое состояние. Замена одной микрочастицы на другую из-за их неотличимости не меняет макроскопического состояния, хотя с микроскопической точки зрения ситуация изменилась.

       Энтропия  является придаточной величиной  и пропорциональна логарифму  термодинамической вероятности, данное выражение определяет принцип Больцмана.

       Этот  принцип является основанием для  истолкования второго начала термодинамики: природные процессы стремятся перевести термодинамическую систему из состояния менее вероятных состояний в более вероятные состояния, то есть перевести систему в равновесное состояние, где W и S  максимальны.

       Больцману удалось установить в теории газов  основное различие между тепловыми и механическими явлениями, которое долгое время было главным аргументом против всякой кинетической теории. Механические явления обратимы, и знак времени в них не играет никакой роли, тогда как тепловые явления так же необратимы, как и выравнивание двух температур. Если теория газов, основанная на механике, приводит к необратимым явлениям, то это связано с гипотезой молекулярного беспорядка, и аналогия с ростом энтропии здесь очевидна. В настоящее время понятие энтропии получило дальнейшее развитие в теории информации, лежащей в основе кибернетики.

 

        7.4. Каковы структурные уровни  организации материи,  чем они  характеризуются? Что такое  «системный подход» и каковы его основные понятия в современной естественнонаучной картине мира?

       Материя – это бесконечное множество  всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. Материя включает в себя не только все непосредственно наблюдаемые объекты и тела природы, но и все те, которые в принципе могут быть познаны в будущем на основе совершенствования средств наблюдения и эксперимента.

Современная наука выделяет три уровня организации материи:

  • Микромир – микрочастицы: атомы, молекулы, элементарные частицы. То есть это мир предельно малых и не наблюдаемых невооруженным глазом частиц. Это мир — от атомов до элементарных частиц. При этом для микромира свойственен корпускулярно-волновой дуализм, т.е. любой микрообъект обладает как волновыми, так и корпускулярными свойствами. Описание микромира опирается на принцип дополнительности Н. Бора и соотношения неопределенности Гейзенберга. Мир элементарных частиц, которые долго считали элементарными «кирпичиками», подчиняется законам квантовой механики, квантовой электродинамики, квантовой хромоди-намики. Квантовое поле носит дискретный характер.
  • Макромир - это мир объектов, соизмеримых с человеческим опытом. Размеры макрообъектов измеряются от долей миллиметра до сотен километров, а времена — от секунд до лет. Поведение же макроскопических тел, состоящих из микрочастиц, описывается классической механикой и электродинамикой. Материя может пребывать как в виде вещества, так и в виде поля, причем вещество дискретно, а поле — непрерывно. Скорости распространения поля равны скорости света, максимальной из возможных скоростей, а скорости движения частиц вещества всегда меньше скорости света.
  • Мегамир – мир объектов космического масштаба: планеты, звезды, галактики, Метагалактика. Кроме них во Вселенной присутствуют материя в виде излучения и диффузная материя. Мегамир описывается законами классической механики с поправками, которые были внесены теорией относительности.

    Системный подход в современном естествознании – это способ изучения системы, при котором каждое явление или процесс рассматривают как целостного организма. Основная роль системного подхода заложена в его междисципленарности.

    Основными определениями  системного подхода являются термины  характеризующие систему:

    • Эмерджентность – приобретение системой новых свойств, которые образуются при взаимодействии её частей, и которых нет у её элементов.
    • Иерархичность систем – существование различных взаимосвязанных уровней рассматриваемых систем.
    • Открытость или закрытость систем – возможность взаимодействия системы с окружающим миром.
    • Стационарность или нестационарность систем. Это свойство характеризует способность системы изменяться во времени.
    • Устойчивость систем – способность системы возвращаться в равновесное состояние после прекращения внешних воздействий.
    • Колебательность систем – способность системы к периодическому изменению своих параметров при приближении к новому состоянию.
    • Инертность систем – возможность систем сопротивляться воздействию окружающей среды.

    Помимо этих терминов выделяют такое свойство систем как детермированность – предсказуемость поведения системы.

 

    8.4.Как строится  термодинамика открытых систем? Поясните понятие диссипативной  структуры по И. Пригожину.  Какие этапы можно выделить  в развитии самоорганизующихся систем? Чем отличается современная научная картина мира от классической картины мира.

    Открытые системы  – системы способные обмениваться с окружающей средой веществом ( энергией и импульсом). Согласно второму началу термодинамики, энтропия, в закрытых системах, возрастая, стремится к своему равновесно максимальному значению, а её производство к нолю.

    В отличие  от закрытых систем в открытых системах возможны состояния с постоянным производством энтропии, которая  отводится от системы. При таком состоянии производство энтропии в открытых системах минимально ( теорема Пригожина). 

    При таких  процессах в системе устанавливается  так называемое стационарное неравновесное состояние. Открытые системы, в которых возможно осуществление термодинамически устойчивых неравновесных состояний, далеких от термодинамического равновесия, при условии диссипации энергии поступающей из вне, называют диссипативными системами.  Данный термин был введен И.Пригожиным.

Информация о работе Контрольная работа по "Концепция современного естествознания"