Автор работы: Пользователь скрыл имя, 17 Января 2013 в 20:16, контрольная работа
Что касается магнетизма, то свойства некоторых тел притягивать другие тела были известны еще в далекой древности, их назвали магнитами. Свойство свободного магнита устанавливаться в направлении «Север-Юг» уже во II в. до н.э. использовалось в Древнем Китае во время путешествий. Первое же в Европе опытное исследование магнита было проведено во Франции в 13 в. В результате было установлено наличие у магнита двух полюсов. В 1600 г. Гильбертом была выдвинута гипотеза о том, что Земля представляет собой большой магнит: эти и обусловлена возможность определения направления с помощью компаса.
1
Электромагнитная картина мира (XIX - начало XX в). Работы М.Фарадея и Д. Максвелла. Теория магнетизма Д.Максвелла. Основы этой картины мира. Новое понимание сущности материи (вещество и поле)
3
2
Нормальное и возбужденное состояние атома. Понятие валентности и степени окисления атома. Какое число связей могут образовывать атомы водорода, кислорода, углерода и серы в нормальном и возбужденном состоянии.
9
3
Эволюция звезд (этапы существования звезд). Нормальные звезды, красные гиганты, белые карлики, нейтронные звезды, черные дыры
Этимологию термина валентность
Эдуард Франкленд – основоположник современных представлений о валентности
Однако точное и позже полностью подтверждённое понимание феномена валентности было предложено в 1852 году химиком Эдуардом Франклендом в работе, в которой он собрал и переосмыслил все существовавшие на тот момент теории и предположения на этот счёт. Наблюдая способность к насыщению разных металлов и сравнивая состав органических производных металлов с составом неорганических соединений, Франкленд ввёл понятие о «соединительной силе», положив этим основание учению о валентности. Хотя Франкленд и установил некоторые частные закономерности, его идеи не получили развития.
Решающую роль в создании теории валентности сыграл Фридрих Август Кекуле. В 1857 г. он показал, что углерод является четырёхосновным (четырёхатомным) элементом, и его простейшим соединением является метан СН4. Уверенный в истинности своих представлений о валентности атомов, Кекуле ввёл их в свой учебник органической химии: основность, по мнению автора — фундаментальное свойство атома, свойство такое же постоянное и неизменяемое, как и атомный вес. В 1858 г. взгляды, почти совпадающие с идеями Кекуле, высказал в статье «О новой химической теории»Арчибальд Скотт Купер.
Уже три года спустя, в сентябре 1861 г. А. М. Бутлеров внёс в теорию валентности важнейшие дополнения. Он провёл чёткое различие между свободным атомом и атомом, вступившим в соединение с другим, когда его сродство «связывается и переходит в новую форму». Бутлеров ввёл представление о полноте использования сил сродства и о «напряжении сродства», то есть энергетической неэквивалентности связей, которая обусловлена взаимным влиянием атомов в молекуле. В результате этого взаимного влияния атомы в зависимости от их структурного окружения приобретают различное «химическое значение». Теория Бутлерова позволила дать объяснение многим экспериментальным фактам, касавшимся изомерии органических соединений и их реакционной способности.
Огромным достоинством теории валентности явилась возможность наглядного изображения молекулы. В 1860-х гг. появились первые молекулярные модели. Уже в 1864 г. А. Браун предложил использовать структурные формулы в виде окружностей с помещёнными в них символами элементов, соединённых линиями, обозначающими химическую связь между атомами; количество линий соответствовало валентности атома. В 1865 г. А. фон Гофман продемонстрировал первые шаростержневые модели, в которых роль атомов играли крокетные шары. В 1866 г. в учебнике Кекуле появились рисунки стереохимических моделей, в которых атом углерода имел тетраэдрическую конфигурацию.
С момента возникновения теории химической связи понятие «валентность» претерпело существенную эволюцию. В настоящее время оно не имеет строгого научного толкования, поэтому практически полностью вытеснено из научной лексики и используется, преимущественно, в методических целях.
Резонансная модель образования ковалентных связей в молекуле HNO3
В основном, под валентностью
химических элементов понимается способнос
Структурная формула молекулы этана
В ряде случаев, с валентностью
отождествляются такие
Особенно это справедливо для молекул с делокализованными химическими связями, например в азотной кислоте степень окисления азота равна +5, тогда как азот не может иметь валентность выше 4. Известное из многих школьных учебников правило — «Максимальная валентность элемента численно равна номеру группы в Периодической таблице» — относится исключительно к степени окисления. Понятия «постоянной валентности» и «переменной валентности» также преимущественно относятся к степени окисления.
Семиполярные и донорно-акцепторные (дативные) связи по своей сути являются «двойными» связями, поскольку при их образовании происходят оба процесса: перенос электрона (образование ионной связи) и обобществление электронов (образование ковалентной связи).
Понятие валентности нельзя использовать
и в очень многих случаях, когда
невозможно применить модель двухэлектронных
двухцентровых связей[6]. Представления о валентности не применимы
к описанию кластерным соединениям, бороводородам, ка
Некорректным будет использование валентности для описания соединений ионной, кристаллической природы. Так в кристалле хлорида натрия NaCl у каждого иона Na+ или Cl– — центра элементарной ячейки — реальное число соседних ионов координационное число равно 6, а степень окисления — +1 и –1 соответственно. Локализованных же электронных пар вовсе нет.
В современной химии активно используется метод молекулярных орбиталей, в котором отсутствуют какие-либо аналоги понятия валентности атома. Между тем, понятие кратности химической связи наиболее близко к характеристике числа образуемых связей. Отождествление единичной связи с двухэлектронной молекулярной орбиталью возможно лишь в предельном, локализованном случае[5]. В квантовой химии аналога понятия валентности как характеристики атома в молекуле не существует, а используемое понятие спин-валентности относится к изолированному атому.
Сте́пень окисле́ния (
Степень окисления соответствует заряду
Степень окисления указывается сверху над символом элемента. В отличие от указания заряда иона, при указании степени окисления первым ставится знак, а потом численное значение, а не наоборот:
— степень окисления,
— заряды.
Степень окисления атома в простом веществе равна нулю, например:
Алгебраическая сумма степеней окисления атомов в молекуле всегда равна нулю:
Понятие степени окисления
вполне применимо и для нестехиометрич
4FeS2 +11O2 = 2Fe2O3 + 8SO2
удобнее всего принять в исходном соединение степень окисления у железа +3 (хотя реально атом железа смещает от себя 2 электрона, то есть степень окисления железа +2), а у серы −3/2 (!), что совсем не противоречит определению степени окисления, как условной единицы и позволяет так же просто, как и в случае других окислительно-восстановительных процессов, уравнять реакцию.
Суммарная степень окисления атомов в молекуле всегда равна нулю.
Следует помнить, что степень окисления является сугубо условной величиной, не имеющей физического смысла, но характеризующей образование химической связи межатомарного взаимодействия в молекуле.
Степень окисления в
ряде случаев не совпадает с валентностью. Например, в органических соединениях углерод всегда четырёхвалентен, а степень окисления
атома углерода в соединениях метана CH4, метило
Степень окисления зачастую не совпадает
с фактическим числом электронов, которые участвуют в образовании связей. Обычно это молекулы с различными электрондефицитными
химическими связями и делокализацией
электронной плотности. Например, в молекуле азотной кислоты степень окисления центрального атома
азота равна +5, тогда как формальная валентность
- 4, а координационое число - 3. В молекуле озона, имеющей сходное с SO2 строение, атомы кислорода характеризуетс
Истинные заряды атомов в соединениях, определённые экспериментальным путём, также не совпадают со степенями окисления этих элементов. Например, заряды атомов водорода и хлора в молекуле хлороводорода HCl, в действительности, равны соответственно +0,17 и −0,17, хотя их степени окисления в этом соединении равны +1 и −1, а в кристаллах сульфида цинка ZnS заряды атомов цинка и серы равны соответственно +0,86 и −0,86, вместо степеней окисления +2 и −2.
3. Эволюция звезд (этапы существования звезд). Нормальные звезды, красные гиганты, белые карлики, нейтронные звезды, черные дыры
Звёздная эволюция в астрономии
Звезда начинает свою жизнь как холодное разрежённое облако межзвёздного газа, сжимающееся под действием собственного тяготения и постепенно принимающее форму шара. При сжатии энергия гравитации переходит в тепло, и температура объекта возрастает. Когда температура в центре достигает 15-20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой. Первая стадия жизни звезды подобна солнечной — в ней доминируют реакции водородного цикла[1]. В таком состоянии он пребывает бо́льшую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга — Расселла, пока не закончатся запасы топлива в его ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на его периферии.
В этот период структура звезды начинает меняться. Её светимость растёт, внешние слои расширяются, а температура поверхности снижается — звезда становится красным гигантом, которые образуют ветвь на диаграмме Герцшпрунга-Рассела. На этой ветви звезда проводит значительно меньше времени, чем на главной последовательности. Когда накопленная масса гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; если звезда достаточно массивна, возрастающая при этом температура может вызвать дальнейшее термоядерное превращение гелия в более тяжёлые элементы (гелий — в углерод, углерод — в кислород, кислород — в кремний, и наконец — кремний вжелезо).
Изучение звёздной эволюции невозможно наблюдением лишь за одной звездой — многие изменения
в звёздах протекают слишком медленно,
чтобы быть замеченными даже по прошествии
многих веков. Поэтому учёные изучают
множество звёзд, каждая из которой находится
на определённой стадии жизненного цикла.
За последние несколько десятилетий широкое
распространение в астрофизике получило моделиров
Вскоре после гелиевой вспышки «загораются» углерод и