Контрольная работа по "Естествознанию"

Автор работы: Пользователь скрыл имя, 17 Февраля 2011 в 22:37, контрольная работа

Описание работы

Наука – это особый вид человеческой познавательной деятельности, направленный на получение, уточнение и производство объективных, системно-организованных и обоснованных знаний о природе, обществе и мышлении. Основой этой деятельности является сбор научных фактов, их постоянное обновление и систематизация, критический анализ и на этой базе синтез новых научных знаний или обобщений, которые не только описывают наблюдаемые природные или общественные явления, но и позволяют построить причинно-следственные связи, и, как следствие – прогнозировать

Содержание работы

1. Что представляет собой наука и паранаука………………………………………....2

2. Что понимают под выражением «методология научного познания»……………...3

3. Перечислите известные физиологическиеполя. Назовите их источники и охарактеризуйте значение в материальном мире…………………………………...…4

4. Охарактеризуйте открытые системы. Приведите примеры……………..…………8

5. Охарактеризуйте специфические свойства пространства………………………...10

6. Охарактеризуйте элементарные частицы микромира……………………………..12

7. Поясните что такое звук, инфразвук, ультразвук………………………….………16

8. Что такое эмпирический и теоретический горизонты человечества. Радиус вселенной, доступный сегодня наблюдательной астрономической технике……....18

9.Охаректиризуйте химический состав солнца, его свойства и происхродящие процессы…………………………………………………………………………….…..21

10. Опешите образование протоклеток ( коацерватов ), их свойства и к чему это привело………………………………………………………………………………….24

Литература……………………………………………………………………...……….26

Файлы: 1 файл

Estestvoznanie.doc

— 142.50 Кб (Скачать файл)

Неравновесность, неустойчивость открытых систем порождается  постоянной борьбой двух тенденций. Первая – это порождение и укрепление неоднородностей, структурирования, локализации элементов открытой системы. И вторая – рассеивание неоднородностей, «размывание» их, диффузия, деструктурализация системы. Если побеждает первая тенденция, то открытая система становится самоорганизующейся системой, а если доминирует вторая –открытая система рассеивается, превращаясь в хаос. А когда эти тенденции примерно равны друг другу, тогда в открытых системах ключевую роль – наряду с закономерным и необходимым – случайные отклонения системы от ее закономерного состояния, флуктуационные процессы. Иногда флуктуация может стать настолько сильной, что существовавшая организация разрушается.

Открытые  системы – это системы необратимые; в них важен фактор времени.

Открытые  неравновесные системы, активно взаимодействующие с внешней средой, могут приобретать особое динамическое состояние – диссипативность, т.е. своеобразное макроскопическое проявление процессов, протекающих на микроуровне. Неравновесное протекание множества микропроцессов приобретает интегративную результирующую на макроуровне, которая качественно отличается от того, что происходит с каждым отдельным ее микроэлементом. Диссипация – это тенденция к размыванию организации, но в нелинейных, неравновесных системах она проявляет себя и через противоположную функцию – структурообразование. Благодаря диссипативности в неравновесных системах могут спонтанно формироваться новые типы структур, совершаться переходы от хаоса и беспорядка к порядку и организации, возникать новые динамические состояния материи.

Диссипативность проявляется в различных формах: в способности «забывать» детали некоторых внешних воздействий, в «естественном отборе» среди  множества микропроцессов, разрушающем  то, что не отвечает общей тенденции  развития; в когерентности (согласованности) микропроцессов, устанавливающей их некий общий темп развития, и др.

Понятие диссипативности тесно связано  с понятием хаоса. Синергетика определяет хаос как многоликое материальное начало, которое не только разрушает и  само является продуктом разрушения, но и способствует созиданию нового. (В этических оценках: хаос не только зло, но и добро.) Благодаря хаосу материя деструктурируется и насыщается неопределенностью, в то же время она порождает структурные организации, оказывается способной к самоорганизации, потенциально готова к новаторству.

В нелинейных (неравновесных) открытых системах постоянно  действует диссипативный, рассеивающий, хаотизирующий фактор. Однако в силу избирательности такой системы, ее различной чувствительности к  разным воздействиям (и внешним, и внутренним) диссипативный фактор действует также избирательно: он рассеивает одни образования и усиливает другие, способствуя тем самым их структурированию и локализации.

Примером  открытых систем, например, в биологии могут служить живые системы.

Живые системы – открытые системы, постоянно обменивающиеся веществом, энергией и информацией со средой. Обмен веществом, энергией и информацией происходит и между частями (подсистемами) системы. Большая часть организмов прямо или косвенно использует солнечную энергию. Для живых систем характерны увеличение упорядоченности, способность к самоорганизации.

   Также можно привести такие примеры  открытых систем как: калькулятор или  радиоприемник с солнечной батареей, где энергия поступает извне; промышленное предприятие, завод, фирма, компания и т.д.

   Очевидно, что для осуществления деятельности хозяйствующих организаций необходимы снабжение, сбыт, работа с потенциальными покупателями и т.д. Именно поэтому  их можно отнести к открытым системам.

  1. Охарактеризуйте специфические свойства пространства.

Специфическими  свойствами пространства являются:

  • Контрольные пространственные формы тел, их положение в пространстве по отношению друг к другу, скорость пространственного перемещения, размеры тел.
  • Наличие у них внутренней симметрии или асимметрии. Различные виды симметрии свойственны как микромиру, так и макромиру, являясь фундаментальным свойством неживой природы. Живому веществу присуще свойство пространственной асимметрии, которым обладает молекула живого вещества.
  • Изотропность и однородность пространства.

    Изотропность означает отсутствие выделенных направлений (верха, низа и др.), независимость свойств тел, движущихся по инерции, от направления их движения. Полная изотропность присуща вакууму, а в структуре вещественных тел проявляется анизотропия в распределении сил связи. Они расщепляются в одних направлениях лучше, чем в других.

    Однородность  пространства означает отсутствие в нем каких-либо выделенных точек.

    Пространство  вблизи земной поверхности физически неоднородно: все тела стремятся занять самые низкие положения, поближе к Земле. Столь же неоднородно пространство вблизи Солнца. Но вся Солнечная система как целое движется прямолинейно, по крайней мере, в течение миллионов лет отклонений от прямолинейного движения не было. Пространство, в котором она движется, свободно от тяготеющих к нему тел и здесь можно говорить о его однородности. Из второго закона Ньютона следует прямолинейность и равномерность движения центра инерции системы тел в однородном пространстве. Никакие внутренние силы не нарушают однородности пространства по отношению к системе как к целому.

    Полная  однородность свойственна лишь абстрактному евклидному пространству и является идеализацией. Реальное пространство материальных систем неоднородно, различается метрикой и значениями в зависимости от распределения тяготеющих масс.  
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     

  1. Охарактеризуйте элементарные частицы микромира.

К микромиру относятся: частицы элементарные и ядра атомов – область порядка 10-15 см, атомы и молекулы 10-8 – 10-7 см.

Свойства  элементарных частиц многообразны. Так, каждой частице соответствует своя античастица, отличающаяся от нее лишь знаком заряда. Для частиц с нулевыми значениями всех зарядов античастица  совпадает с частицей (например, фотон). Каждая элементарная частица характеризуется собственным набором значений определенных физических величин. К таким величинам относятся: масса, электрический заряд, спин, время жизни частицы, магнитный момент, пространственная четность, лептонный заряд, барионный заряд и др.

Общие характеристики всех частиц: масса, время  жизни, спин. Когда говорят о массе  частицы, имеют в виду ее массу  покоя, поскольку она не зависит  от состояния движения. Частица, имеющая  нулевую массу покоя, движется со скоростью света (фотон). Нет двух частиц с одинаковыми массами. Электрон — самая легкая частица с ненулевой массой покоя. Протон и нейтрон тяжелее электрона почти в 2000 раз.

Важная  характеристика частицы – спин – собственный момент импульса частицы. В зависимости от спина все частицы делятся на две группы: бозоны – частицы с целыми спинами 0, 1 и 2; фермионы – частицы с полуцелыми спинами (1/2, 3/2).

Так, протон, нейтрон и электрон имеют спин 1/2, а спин фотона равен 1. Известны частицы  со спином 0,3/2,2. Частица со спином 0 при любом угле поворота выглядит одинаково. Частица со спином 1 принимает тот же вид после полного оборота на 360°. Частица со спином 1/2 приобретает прежний вид после оборота на 720° и т.д. Частица со спином 2 (гипотетический гравитон) принимает прежнее положение через пол-оборота (180°).

Частицы характеризуются и временем жизни. По этому признаку частицы делятся  на стабильные и нестабильные. Стабильные частицы – это электрон, протон, фотон и нейтрино, (до конца пока не решен вопрос о стабильности протона. Возможно, он распадается за t = 1031 лет). Нейтрон стабилен, когда находится в ядре атома, но свободный нейтрон распадается примерно за 15 мин. Все остальные известные частицы нестабильны; время их жизни колеблется от нескольких микросекунд до 10-24 с. Самые нестабильные частицы резонансы. Время их жизни 10-22–10-24 с.

Прежде  всего, свойства частицы определяются ее способностью (или неспособностью) участвовать в сильном взаимодействии. Частицы, участвующие в сильном  взаимодействии, образуют особый класс и называются адронами. Частицы, участвующие преимущественно в слабом взаимодействии и не участвующие в сильном, называются лептонами. Отдельную группу элементарных частиц составляет фотон.

Лептоны. Лептоны ведут себя как точечные объекты, не обнаруживая внутренней структуры даже при сверхвысоких энергиях. Они, по-видимому, являются элементарными (в собственном смысле этого слова) объектами, т.е. они не состоят из каких-то других частиц. Хотя лептоны могут иметь электрический заряд, а могут и не иметь, спин у всех у них равен 1/2.

К лептонам относятся: электрон, мюон, тау-частица  и нейтрино.

Среди лептонов наиболее известен электрон. Электрон – это первая из открытых элементарных частиц. Электрон – носитель наименьшей массы и наименьшего электрического заряда (не считая кварков) в природе. Масса электрона равна 1, заряд – (-1).

Другой  хорошо известный лептон – нейтрино. Нейтрино наряду с фотонами являются наиболее распространенными частицами во Вселенной. Нейтрино почти неуловимы, обладают огромной проникающей способностью, особенно при низких энергиях. Не участвуя ни в сильном, ни в электромагнитном взаимодействиях, они проникают через вещество, как будто его вообще нет. Нейтрино – это некие «призраки» физического мира. С одной стороны, это усложняет их детектирование, а с другой – создает возможность изучения внутреннего строения звезд, ядер галактик, квазаров и др.

Одна  из интересных страниц истории изучения нейтрино связана с вопросом о  его массе: имеет или не имеет  нейтрино массу покоя. Теория допускает, что в отличие от фотона нейтрино может иметь небольшую массу покоя. Если нейтрино действительно обладает массой покоя (по оценкам, от 0,1 эВ до 10 эВ), то это влечет за собой фундаментальные следствия в теории Великого объединения, космологии, астрофизике. Длящаяся уже почти 60 лет «погоня» физиков за массой неуловимой частицы, похоже, подходит к концу.

Достаточно  широко распространены в природе  мюоны, на долю которых приходится значительная часть космического излучения. Мюон – одна из первых известных нестабильных субатомных частиц с массой 206,7 и зарядом -1. Во всех отношениях мюон напоминает электрон: имеет тот же заряд и спин, участвует в тех же взаимодействиях, но имеет большую массу и нестабилен. Примерно за две миллионные доли секунды мюон распадается на электрон и два нейтрино. Проникая в вещество, мюоны взаимодействуют с ядрами и электронами атомов и образуют необычные соединения. Положительный мюон, присоединяя к себе электрон, образует систему, аналогичную атому водорода – мюоний, химические свойства которого во многом подобны свойствам водорода. А отрицательный мюон может замещать на электронной оболочке один из электронов, образуя так называемый мезоатом. В мезоатоме мюоны расположены в сотни раз ближе к ядру, чем электроны. Это позволяет использовать мезоатом для изучения формы и размеров ядра.

Известен  заряженный лептон, получивший название тау-лептон. Это очень тяжелая частица. Ее масса около 3500 масс электрона, но во всем остальном он ведет себя подобно электрону и мюону. Заряд тау-лептона равен 0.

Кроме того, существует несколько типов нейтрино: электронное нейтрино, мюонное нейтрино и тay-нейтрино. Таким образом, общее число разновидностей нейтрино равно трем, а общее число лептонов – шести. Разумеется, у каждого лептона есть своя античастица; таким образом, общее число различных лептонов равно 12. Нейтральные лептоны участвуют только в слабом взаимодействии; заряженные – в слабом и электромагнитном.

Адроны. Если лептонов всего 12, то адронов насчитываются сотни. Подавляющее большинство из них – резонансы, т.е. крайне нестабильные частицы. Тот факт, что адронов существует сотни, наводит на мысль, что адроны сами построены из более мелких частиц. Все адроны встречаются в двух разновидностях – электрически заряженные и нейтральные. Они участвуют во всех фундаментальных взаимодействиях, включая сильное.

Информация о работе Контрольная работа по "Естествознанию"