Автор работы: Пользователь скрыл имя, 31 Января 2011 в 21:44, контрольная работа
14. Достижения современного естествознания: атомные технологии.
34. Многообразие мира галактик. Содержание и значение закона Хаббла
74. Процессы самоорганизации в неживой природе.
94. Строение и структура молекул ДНК и РНК. Генетический код.
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
Тверской
Государственный Технический
(ГОУВПО “ТГТУ”)
Кафедра
Биотехнологии и химии
Контрольная работа
Выполнил: студент 1 курса
заочного отделения
ИДПО
группы УП-139
Нестеров А.А.
Принял: Манаенков О.Н.
Вышний Волочек 2010
14. Достижения современного естествознания: атомные технологии.
Трудно переоценить роль ядерного оружия. С одной стороны, это мощное средство устрашения, с другой – самый эффективный инструмент укрепления мира и предотвращения военного конфликтами между державами, которые обладают этим оружием. С момента первого применения атомной бомбы в Хиросиме прошло 52 года. Мировое сообщество близко подошло к осознанию того, что ядерная война неминуемо приведет к глобальной экологической катастрофе, которая сделает дальнейшее существование человечества невозможным. В течение многих лет создавались правовые механизмы, призванные разрядить напряженность и ослабить противостояние между ядерными державами. Так например, было подписано множество договоров о сокращении ядерного потенциала держав, была подписана Конвенция о Нераспространении Ядерного Оружия, по которой страны-обладателя обязались не передавать технологии производства этого оружия другим странам, а страны, не имеющие ядерного оружия, обязались не предпринимать шагов для его разработки; наконец, совсем недавно сверхдержавы договорились о полном запрещении ядерных испытаний. Очевидно, что ядерное оружие является важнейшим инструментом, который стал регулирующим символом целой эпохи в истории международных отношений и в истории человечества.
Атомные бомбы, тротиловый эквивалент которых равен 1- 50 тыс. т, относят к классу тактических атомных бомб и предназначают для решения оперативно-тактических задач. К тактическому оружию относят также артиллерийские снаряды с атомным зарядом мощность 10 – 15 тыс. т. и атомные заряды (мощностью около 5 – 20 тыс. т) для зенитных управляемых снарядов и снарядов, используемых для вооружения истребителей. Атомные и водородные бомбы мощностью свыше 50 тыс. т относят к классу стратегического оружия.
Нужно отметить, что подобная классификация атомного оружия является лишь условной, поскольку в действительности последствие применения тактического атомного оружия могут быть не меньшими, чем те, которые испытало на себе население Хиросимы и Нагасаки, а даже большими.
Сейчас очевидно, что взрыв только одной водородной бомбы способен вызвать такие тяжелые последствия на огромных территориях, каких не несли с собой десятки тысяч снарядов и бомб, применявшихся в прошлых мировых войнах. А нескольких водородных бомб вполне достаточно, чтобы превратить в зону пустыни огромные территории.
Ядерное оружие подразделяется на 2 основных типа: атомное и водородное (термоядерное). В атомном оружии выделение энергии происходит за счет реакции деления ядер атомов тяжелых элементов урана или плутония. В водородном оружии энергия выделяется в результате образования (или синтеза) ядер атомов гелия из атомов водорода.
Получение ядерной энергии в больших количествах впервые было достигнуто в цепной реакции деления ядер урана. Когда изотоп уран-235 поглощает нейтрон, ядро урана распадается на две части и при этом вылетают два – три нейтрона. Если из числа нейтронов, образующихся после каждого акта деления, в следующем участвует в среднем более одного нейтрона, то процесс экспоненциально нарастает, приводя к неуправляемой цепной реакции.
Для преобразования
ядерной энергии в
Ядерные реакторы: классификация.
Ядерные реакторы можно классифицировать по типу применяемых в них замедлителей: реакторы на графите, на воде и на тяжелой воде. Тяжелой называется вода, в которой обычный водород заменен его тяжелым изотопом – дейтерием. Тяжелая вода поглощает значительно больше электронов, чем обычная.
Для поддержания цепной реакции необходимо определенное количество делящегося вещества. Если в реакторе теряется в результате поглощения или испускания больше нейтронов, чем возникает, то реакция не будет самоподдерживающейся. Если же, наоборот, нейтронов возникает больше, чем теряется, то реакция становится самоподдерживающейся и нарастающей. Минимальное количество вещества, обеспечивающее самоподдерживающееся протекание реакции, называется критической массой . Для нормальной работы ядерного реактора поток нейтронов должен поддерживаться постоянным на требуемом уровне. Режим работы реактора регулируют, вдвигая и выдвигая стержни из поглощающего материала.
Во второй половине
XX века человечество столкнулось с опасностью
радиационного загрязнения окружающей
природной среды, которая поставила под
угрозу существование всего живого на
Земле. О последствиях радиоактивного
загрязнения международная общественность
хорошо информирована. Описания трагических
последствий атомных взрывов в Японии,
выступления против испытаний ядерного
оружия широко известны. Принятие международно-правовых
мер против испытаний ядерного оружия
встречает активную поддержку.
Основным актом, решающим задачу предотвращения
радиоактивного загрязнения среды является
Договор о запрещении испытаний ядерного
оружия в атмосфере, космическом пространстве
и под водой, который был подписан 5 августа
1963 г. в Москве и в котором в настоящее
время участвует более 10 государств. Московский
Договор оказал благоприятное воздействие
на состояние радиоактивного фона Земли,
радиоактивность нашей планеты снизилась.
Однако после серии взрывов в атмосфере,
проведенных в 1969—1970 гг. Францией и КНР
содержание стронция-90 в атмосфере вновь
поднялось на 20 процентов. Дают о себе
знать и подземные ядерные взрывы, которые
еще не запрещены. Явления, сопутствующие
взрывам атомных и водородных бомб, влияют
на погоду, являются причиной изменения
направления ветров, внезапных ливней,
бурь и паводков. По мнению ученых, ядерные
взрывы изменяют напряженность электрического
поля атмосферы и могут стать серьезной
причиной климатических нарушений, в частности
неожиданных похолоданий в районах, где
обычно низкие температуры не наблюдались.
Доказано, что ядерные взрывы на поверхности
Земли и в атмосфере не только отрицательно
отражаются на здоровье ныне живущих людей,
но и угрожают последующим поколениям.
Все эти обстоятельства диктуют необходимость
дальнейшей последовательной борьбы за
полное запрещение ядерных испытаний,
а также принятие необходимых мер защиты
окружающей среды от загрязнения в результате
мирного использования атомной и ядерной
энергии.
Проблема предотвращения
и устранения радиоактивного загрязнения
природной среды проявилась в
новых драматических чертах после
аварии на Чернобыльской АЭС 26 апреля
1986 г. Авария подтолкнула и правовую сферу
ядерной безопасности, вызвав к жизни,
помимо прочего, большой комплекс новых
международных экологических правоотношений.
В частности 26 сентября 1986 г. в Вене были
приняты Конвенция об оперативном оповещении
о ядерной аварии и Конвенция о помощи
в случае ядерной аварии или радиационной
аварийной ситуации. Участники конвенций
взяли на себя обязательства строго следить
за состоянием ядерных объектов, а в случае
возникновения ядерных аварий или аварийных
ситуаций, наряду с принятием защитных
мер, немедленно оповещать другие договаривающиеся
стороны. Они обязались также оказывать
разнообразную техническую, социальную
и иную помощь (оперативно и в долгосрочном
контексте) тем государствам и народам,
которые оказались жертвами ядерной аварии
или аварийной ситуации. Было принято
и осуществляется множество программ,
связанных с реализацией международных
экологических правоотношений в этой
области развития атомной энергетики
и обеспечения радиационной безопасности.
34. Многообразие мира галактик. Содержание и значение закона Хаббла
Мир галактик столь же разнообразен, как и мир звезд. Долгое время туманные пятнышки, наблюдаемые в телескопы, считали туманностями, относящимися к Галактике (воспринимаемой как вся Вселенная). Это — огромные вращающиеся системы звезд, разнообразные по внешнему виду и физическим характеристикам, размером 1 — 100 кпк. В них находится от 107 до 1012 звезд. Небольшие галактики часто являются спутниками больших галактик. Невооруженным глазом можно увидеть ближайшие к нам галактики — Магеллановы Облака (в Южном полушарии) и туманность Андромеды (в Северном полушарии), они входят в Местную группу галактик (рис. 9.10). Остальные галактики видны только в телескоп как пятнышки. Классификация галактик в каталогах — М с номером. Так, М31 — туманность Андромеды. В каталоге, составленном в СССР в 60-е гг. XX в., более 30 000 галактик.
Деление галактик на спиральные, эллиптические и неправильные, основанное на внешнем виде, было введено в 1925 г. американским астрономом Э.Хабблом, изучившим более тысячи галактик (рис. 9.11). Его классификация отражает и существенные физические различия между галактиками.
Спиральные галактики состоят из двух подсистем — дисковой и сферической. Сферическая часть напоминает эллиптическую галактику, дисковая — сжата и содержит много межзвездной пыли, газа и молодых звезд. Более молодые и яркие звезды сгруппированы в спиральные рукава. Оказалось, что почти половина галактик имеют спиральную форму. В центре таких галактик — красивое и яркое ядро, большое и тесное скопление звезд. Из ядра выходят закручивающиеся вокруг него ветви, состоящие из молодых звезд и облаков нейтрального газа. Таковы галактики Млечный Путь и туманность Андромеды. Эллиптические галактики несколько похожи на них, но с меньшими рукавами. Среди наиболее ярких галактик они составляют 25 %; считают, что они состоят из более старых звезд (возраста Солнца или старее), так как имеют красноватый оттенок. Они почти не содержат межзвездного газа, и там не формируются новые звезды. Вращение в них происходит с небольшими скоростями (менее 100 км/с), а равновесие поддерживается за счет хаотических передвижений звезд по радиально вытянутым орбитам. Такую галактику наблюдают в созвездии Девы, она имеет почти шаровидную форму и весьма активна. В ядре эллиптической радиогалактики Кентавра А удалось обнаружить на расстоянии в 106 св. лет отдельные детали размером в 100 св. лет, отражающие бурную активность. Неправильные галактики имеют небольшую массу и размер, в них много межзвездного газа. Заметны как очаги звездообразования какие-то клочки. Примером таких галактик являются наиболее близкие к Земле две небольшие галактики Магелланова Облака, которые даже называют спутниками Млечного Пути. До Большого Облака около 200 тыс. св. лет, до Малого — всего 170 тыс. св. лет. В Большом Облаке в 1987 г. наблюдалась вспышка Сверхновой звезды, а при помощи обсерватории «Квант» орбитального комплекса «Мир» в 1999 г. было зарегистрировано жесткое рентгеновское излучение. Наблюдения с помощью «Кванта» и другого российского рентгеновского телескопа «Гранат» позволили подтвердить гипотезу о том, что в центре нашей Галактики — черная дыра, масса которой в миллионы раз больше солнечной.
Отдельные звезды в галактиках стали различать только в 30-е гг. В 1923 г. Хаббл с помощью 2,5-метрового рефлектора открыл в спиральной туманности созвездия Андромеды несколько перемен ных звезд (т.е. с меняющимся блеском) и цефеиду. По периоду колебаний блеска цефеиды он определил ее звездную величину и расстояние до нее — 900 тыс. св. лет. Туманность М31 находится вне нашей Галактики. Поправка на поглощение излучения межзвездным газом увеличила это расстояние до 2,2 млн св. лет, что превышает более чем в 20 раз размеры нашей Галактики. Хаббл подсчитал число галактик до 20-й звездной величины на 1283 участках неба. Он нашел, что на один квадратный градус на небесной сфере приходится в среднем 130 галактик. Небесная сфера содержит 41 253 квадратных градуса, поэтому общее число галактик до 20-й звездной величины составляет 5,4 млн (звезды до 20-й величины можно наблюдать в 2,5-метровый телескоп Хаббла).
Галактики распределены почти равномерно по всем направлениям, хотя образуют скопления и группы. Тесным является скопление из 40 тысяч галактик в созвездии Волосы Вероники (Северное полушарие), находящееся на расстоянии около 400 млн св. лет и занимающее почти 12°. Иногда группы столь тесные, что галактики как бы проникают друг в друга. Так, в нашу Галактику частично заходит галактика Малое Магелланово Облако. Радиусы больших скоплений (около тысячи галактик) составляют до 1 — 4 Мпк или даже 10 Мпк. Такое скопление наблюдается в созвездии Девы, находящемся на расстоянии 15 Мпк от нас — оно и есть центр Местного сверхскопления галактик, куда входит и Местная группа галактик. Размеры таких скоплений растут в связи с общим расширением Вселенной.
Лучевые скорости галактик первым определил Слайфер (1912), используя эффект Доплера. К 1925 г. он измерил скорости 41 галактики, из них 36 удалялись от нас со скоростями до 1000 км/с, и лишь несколько приближались. Хаббл измерил расстояния до галактик по цефеидам и ярким звездам и установил (1929), что скорости «разбегания» галактик растут пропорционально расстоянию до них. Закон Хаббла: V= Hr, где H— постоянная, получившая название постоянной Хаббла (см. рис. 3.8).
Сначала
Хаббл считал, что Н =
500 км/(с • Мпк). В настоящее время H
считают от 50 до 100 км/(с Мпк). С помощью
красного смещения Хаббла оценивали расстояние
до галактик и до края видимой Вселенной
— Метагалактики. Поскольку увеличение
красного смещения сопровождается уменьшением
яркости галактики, то заключили, что закон
V= Hr действительно отражает расширение
Метагалактики. При Н
= 50 кмДс-Мпк) и
=0,3 получается
= 19,6 (
) млрд св. лет.