Как взаимодействуют частицы. Физический вакуум

Автор работы: Пользователь скрыл имя, 29 Января 2015 в 00:56, реферат

Описание работы

Наш мир – един и целостен, состоит из множества частиц, которые постоянно взаимодействуют между собой. Связь, взаимодействие и движение представляет собой важнейшие атрибуты материи, без которых невозможно ее существование. Несмотря на качественное разнообразие, у всех форм движения есть одна общая черта. Все они сводятся к взаимодействию тел, которое обусловливает соединение различных материальных элементов в системы, их структурные связи и контакты с другими материальными системами

Содержание работы

Введение 2
Гравитация 3
Электромагнетизм 5
Слабое взаимодействие 6
Сильное взаимодействие 8
Частицы — переносчики взаимодействий 9
Физический вакуум 10
Выводы 13
Список литературы 13

Файлы: 1 файл

Как взаимодействуют частицы. Физический вакуум111.docx

— 33.65 Кб (Скачать файл)

Вместе с тем выяснилось, что сильное взаимодействие испытывают не все частицы. Так, его испытывают протоны и нейтроны, но электроны, нейтрино и фотоны не подвластны ему. В сильном взаимодействии

8

участвуют обычно только тяжелые частицы.

Теоретическое объяснение природы сильного взаимодействия развивалось трудно. Прорыв наметился только вначале 1960-х гг., когда была предложена кварковая модель. В этой теории нейтроны и протоны рассматриваются не как элементарные частицы, а как составные системы, построенные из кварков.

Таким образом, в фундаментальных физических взаимодействиях четко прослеживается различие сил дальнодействующих и близкодействующих. С одной стороны, взаимодействия неограниченного радиуса действия (гравитация, электромагнетизм), а с другой — малого радиуса (сильное и слабое). Мир физических процессов развертывается в границах этих двух полярностей и воплощает единство предельно малого и предельно большого — микромира и мегамира, элементарной частицы и всей Вселенной.

 

  1. Частицы — переносчики взаимодействий

В основе каждого фундаментального физического взаимодействия лежит частица, которая является переносчиком взаимодействий. 
Перечень известных частиц не исчерпывается лептонами и адронами, образующими строительный материал вещества. Есть еще один тип частиц, которые не являются строительным материалом материи, а непосредственно обеспечивают фундаментальные взаимодействия, т.е. образуют своего рода «клей», не позволяющий материи распадаться на части.

Переносчиком электромагнитного взаимодействия выступает фотон. Теория электромагнитного взаимодействия представлена квантовой электродинамикой.

Глюоны (их всего восемь) — переносчики сильного взаимодействия между кварками. Последние благодаря глюонам связываются парами или

9

тройками.

Переносчиками слабого взаимодействия являются три частицы — W± и Z° -бозоны. Они были открыты лишь в 1983 г. Радиус слабого взаимодействия чрезвычайно мал, поэтому его переносчиками должны быть частицы с большими массами покоя. В соответствии с принципом неопределенности время жизни частиц с такой большой массой покоя должно быть чрезвычайно коротким — всего лишь около 10-26 с.

Высказывается мнение, что возможно существование и переносчика гравитационного поля — гравитона. Подобно фотонам, гравитоны движутся со скоростью света; следовательно, это частицы с нулевой массой покоя. Но в то время как фотон имеет спин 1, спин гравитона равен 2. Это важное различие определяет направление силы: при электромагнитном взаимодействии одноименно заряженные частицы (электроны) отталкиваются, а при гравитационном — все частицы притягиваются друг к другу.

Особенно важно то, что каждая группа этих переносчиков взаимодействий характеризуется своими специфическими законами сохранения. А каждый закон сохранения может быть представлен как проявление определенной внутренней симметрии уравнений поля (движения). Это обстоятельство используется для построения единой теории фундаментальных взаимодействий.

Классификация частиц на адроны, лептоны и переносчики взаимодействий исчерпывает мир известных нам субъядерных частиц. Каждый вид частиц играет свою роль в формировании структуры материи, Вселенной.

 

  1. Физический вакуум

Как было ранее обговорено, в основе каждого фундаментального физического взаимодействия лежит изначально присущее веществу особое свойство, природу которого удастся выяснить лишь в ходе

10

дальнейших исследований природы вещества и вакуума. Рассмотрим, как же ведут себя в вакууме, исследуемые нами, частицы. Но для начала дадим определения вакууму.

ВАКУУМ — реальная физическая система, пространство, в котором   отсутствуют реальные частицы, и выполняется условие минимума плотности   энергии в данном объеме.

В своей работе мы неоднократно упоминали понятие «поле» и выяснили, что в гравитационное поле не имеет ограничения в радиусе взаимодействий, в отличие от электромагнитного поля.

Поле – особое состояние среды, в каждой точке которой заданы параметры, которые характеризуют состояние вещества и которые непрерывно и плавно меняются от точки к точке.

Поле является материальным фактором, который приводит к взаимодействию тел.

В макромире поле противоположно веществу (не имеет массы, непрерывно и т.п.).

В микромире нет раздельно поля и вещества, там присутствует корпускулярно-волновой дуализм.

Физический вакуум – самое низшее энергетическое состояние квантового поля.   Среднее число частиц в вакууме равно нулю. Там существуют виртуальные частицы со временем жизни t£10-18 с. Вакуум «кипит» этими частицами, но они обладают низкой энергией.

Одной из особенностей вакуума является наличие в нем полей с энергией, равной нулю и без реальных частиц. Это электромагнитное поле без фотонов, это ионное поле без пи-мезонов, электронно-позитронное поле без электронов и позитронов.

Но раз есть поле, то оно должно колебаться. Такие колебания в вакууме часто называют нулевыми потому, что там нет частиц. Удивительная вещь: колебания поля невозможны без движения частиц, но в данном случае

11

колебания есть, а частиц нет! Физики считают, что при колебаниях рождаются и исчезают кванты. Физика сумела найти компромисс между присутствием и отсутствием частиц в вакууме. Компромисс такой: частицы рождаются при нулевых колебаниях, живут очень недолго и исчезают. Однако, получается, что частицы, рождаясь из «ничего» и приобретая при этом массу и энергию, нарушают тем самым неумолимый закон сохранения массы и энергии. Тут вся суть в том «сроке жизни», который отпущен частицам: он настолько краток, что «нарушение» законов можно лишь вычислить теоретически, но экспериментально это наблюдать нельзя. Поэтому частицы, живущие так мало, что этого в каждом конкретном случае и заметить нельзя, назвали, в отличие от обычных, реальных, - виртуальными. В точном переводе с латыни – возможными. Но считать, что данные частицы только возможны – неверно. Эти «возможные» частицы в вакууме вполне реально воздействуют, как это наблюдается в точных экспериментах, на вполне реальные образования из безусловно реальных частиц и даже на микроскопические тела. И если отдельную виртуальную частицу физика обнаружить не может, то суммарное их воздействие на обычные частицы фиксируется отлично.

Наблюдать воздействие вакуумных виртуальных частиц оказалось, возможно не только в опытах, где изучаются взаимодействия элементарных частиц, но и в эксперименте с макротелами. Две пластины, помещенные в вакуум и

приближенные друг к другу, под ударами виртуальных частиц начинают притягиваться. Этот факт открыт в 1965 году голландским теоретиком и экспериментатором Гендриком Казимиром.

По сути, абсолютно все реакции, все взаимодействия между реальными элементарными частицами происходят при непременном участии вакуумного виртуального фона, на который элементарные частицы, в свою очередь, тоже влияют.

12

 

Оказалось также, что виртуальные частицы возникают не только в вакууме. Их порождают и обычные частицы. Электроны, например, постоянно испускают и тут же поглощают виртуальные фотоны.

Физический вакуум проявляется только при достаточно большой энергии - виртуальные частицы начинают взаимодействовать с реальными частицами.            

e- + b - « 2g + Q

Современный тезис: Физический вакуум является основой Вселенной (1990-е гг.)

 

Выводы

В данной работе мы рассмотрели взаимодействие в микромире, а именно как взаимодействуют частицы.

В данном реферате нам удалось рассмотреть природу взаимодействия частиц на примере взаимодействия в физическом вакууме. Так же мы с вами подробно рассмотрели четыре типа фундаментальных физических взаимодействий.

 

Литература

  1. Н.М. Юрина, С.И. Алексеев «Концепция современного естествознания»
  2. А.П. САДОХИН «Концепция современного естествознания»
  3. Найдыш В. Концепции современного естествознания: Учебник

 

 

 

 

13


Информация о работе Как взаимодействуют частицы. Физический вакуум