Химические взаимодействия во Вселенной

Автор работы: Пользователь скрыл имя, 10 Сентября 2011 в 06:22, контрольная работа

Описание работы

Во Вселенной существуют четыре типа сил, определяющих характер взаимодействия между объекта¬ми. Две из них известны как гравитационная и электромагнитная. Сила вызывает изменения в той или иной системе. Гравитационные силы в пространстве держат, например, планеты на их орбитах и собирают вместе космическую пыль, в результате чего образуются звезды.
Еще два типа сил во Вселенной называются сильным и слабым взаимодействи¬ями. Они действуют только внутри атомных ядер и не оказывают влияния на Вселенную в целом.
В физике, в свою очередь, существует так называемая стандартная модель - это теоретические предста¬вления (набор уравнений) о существующих во Вселенной существующих четырех типах фундаментальных сил взаимодействия между объектами.

Содержание работы

1. Четыре типа сил Вселенной и «Стандартная модель» физики 3

2. Сильное взаимодействие 3

3. Электромагнитное взаимодействие 4

4. Слабое взаимодействие 8

5. Гравитационное взаимодействие 9

Список использованной литературы 12

Файлы: 1 файл

Химические взаимодействия.doc

— 101.00 Кб (Скачать файл)

    К примеру, если два человека обменяются яблоками, у каждого опять будет по одному яблоку, а если они обменяются идеями, у каждого их будет по две. А если один из них большой выдумщик и у него уже есть две идеи, а у его партнера ни одной? Что ж, во время общения результат окажется тем же — у каждого по две идеи, которые станут общими. Вот и пара электронов в области перекрывания может появиться и при перекрывании двух орбиталей — пустой и имеющей два электрона. Это донорно-акцепторный механизм образования химической связи: атом-донор безвозмездно отдает, а атом-акцептор принимает два спаренных электрона.

    У молекул воды или аммиака имеются  атомные орбитали, не участвующие в образовании связи. Электроны, находящиеся на таких орбиталях, называют неподеленными — наверное, потому, что атом еще не успел ими поделиться. У него появляется такая возможность, если он присоединит к себе частицу, имеющую свободную атомную орбиталь, например катион водорода Н+, вообще не имеющий электронов. При этом получается катион оксония Н3О+.

    Таким образом на основе электромагнитных взаимодействий объясняются не только электрические и магнитные явления, но и оптические, и тепловые, и химические.

4. Слабое взаимодействие

    Слабое  взаимодействие, одно из фундаментальных взаимодействий, в котором участвуют все элементарные частицы (кроме фотона). Слабое взаимодействие гораздо слабее не только сильного, но и электромагнитного взаимодействия, но неизмеримо сильнее гравитационного. Ожидаемый радиус действия слабого взаимодействия порядка 2·10-16 см. Слабое взаимодействие обусловливает большинство распадов элементарных частиц, взаимодействия нейтрино с веществом и др. Для слабого взаимодействия характерно нарушение четности, странности, «очарования» и др. В кон. 60-х гг. создана единая теория слабого и электромагнитного взаимодействий (т. н. электрослабое взаимодействие).

    Четность, квантовое число, характеризующее симметрию волновой функции физической системы или элементарной частицы при некоторых дискретных преобразованиях: если при таком преобразовании y не меняет знака, то четность положительна, если меняет, то четность отрицательна. Для абсолютно нейтральных частиц (или систем), которые тождественны своим античастицам, кроме четности пространственной, можно ввести понятия зарядовой четности и комбинированной четности (для остальных частиц замена их античастицами меняет саму волновую функцию).

    Странность (S), целое (нулевое, положительное или отрицательное) квантовое число, характеризующее адроны. Странность частиц и античастиц противоположны по знаку. Адроны с S≠0 называются странными. Странность сохраняется в сильном и электромагнитном взаимодействиях, но нарушается (на 1) в слабом взаимодействии.

    «Очарование» (чарм, шарм), квантовое число, характеризующее адроны (или кварки); сохраняется в сильном и электромагнитном взаимодействиях, но нарушается слабым взаимодействием. Частицы с ненулевым значением «очарование» называются «очарованными» частицами.

      Слабое взаимодействие, например, управляет радиоактивным распадом.

    Радиоактивный распад – это постепенное уменьшение числа радиоактивных атомов вещества при спонтанном ядерном распаде, в результате чего эти атомы из нестабильного состояния переходят в стабильное. Время, в течение которого распадается половина таких атомов, называется периодом полураспада. Процесс радиоактивного распада сопровождается испусканием альфа-частиц, нуклонов, электронов и гамма-лучей либо непосредственно из нестабильных атомных ядер, либо вследствие ядерной реакции.

    Радиоактивный распад представляет собой естественный процесс, протекающий вокруг нас  постоянно. Именно радиоактивный распад таких элементов, как уран, торий  и калий, нагревает недра Земли. Внутренняя теплота ядра Земли также генерируется радиоактивным распадом элементов, образовавшихся в теле звезд и вошедших в состав первобытной Земли вследствие Большого Взрыва. Эта же теплота, в свою очередь, питает энергией тектоническую активность Земли.

    Время, необходимое для распада (с выделением энергии) половины данного количества радиоактивного материала называется периодом полураспада. Атом распадается путем деления (или расщепления) атомного ядра, переходя из нестабильного состояния в стабильное. Все радиоактивные вещества стремятся со временем прийти в стабильное состояние, и этот процесс сопровождается испусканием ионизирующего излучения. Период полураспада различных радиоактивных материалов варьирует от менее чем миллионной доли секунды до миллионов лет. Период полураспада какого-либо определенного вещества постоянен и не зависит от физических условий, таких, как давление или температура. Поэтому радиоактивность можно использовать для оценки интервалов времени, измеряя долю ядер, которая уже подверглась распаду. Например, измерив количество углерода, оставшееся в ископаемых остатках, можно узнать, сколь давно этот ископаемый материал образовался.

    Периоды полураспада радиоактивных веществ, представляющих наибольшую угрозу человечеству, не являются ни очень короткими, ни очень долгими. Короткоживущие вещества теряют свою активность столь быстро, что не представляют опасности. Радиоактивность очень долгоживущих материалов уменьшается столь медленно, что вредное ионизирующее излучение от них практически безопасно.

5. Гравитационное взаимодействие

    Гравитационное  взаимодействие, универсальное (присущее всем видам материи) взаимодействие, самое слабое из фундаментальных взаимодействий элементарных частиц, имеет характер притяжения.

    Если  это взаимодействие относительно слабое и тела движутся медленно по сравнению со скоростью света в вакууме с, то справедлив закон всемирного тяготения Ньютона. В случае сильных полей и скоростей, сравнимых с c, необходимо пользоваться созданной А. Эйнштейном общей теорией относительности (ОТО), являющейся обобщением ньютоновской теории тяготения на основе специальной относительности теории. В основе ОТО лежит принцип эквивалентности — локальной неразличимости сил тяготения и сил инерции, возникающих при ускорении системы отсчета. Этот принцип проявляется в том, что в заданном поле тяготения тела любой массы и физической природы движутся одинаково при одинаковых начальных условиях. Теория Эйнштейна описывает тяготение как воздействие физической материи на геометрические свойства пространства-времени (п.-в.); в свою очередь, эти свойства влияют на движение материи и другие физические процессы. В таком искривленном п.-в. движение тел «по инерции» (т. е. при отсутствии внешних сил, кроме гравитационных) происходит по геодезическим линиям, аналогичным прямым в неискривленном пространстве, но эти линии уже искривлены. В сильном поле тяготения геометрия обычного трехмерного пространства оказывается неевклидовой, а время течет медленнее, чем вне поля. Теория Эйнштейна предсказывает конечную скорость изменения поля тяготения, равную скорости света в вакууме (это изменение переносится в виде гравитационных волн), возможность возникновения черных дыр и др. Эксперименты подтверждают эффекты ОТО.

    Проведя мысленные эксперименты, Эйнштейн пришел к выводу, что реальное гравитационное поле будет эквивалентно ускоренным системам только в том случае, если пространство-время является искривленным, т.е. неевклидовым: «Наш мир неевклидов. Геометрическая природа его образована массами и их скоростями. Гравитационные уравнения ОТО стремятся раскрыть геометрические свойства нашего мира»1. Великий физик исходил из того, что пространственно-временной континуум носит риманов характер. А римановым (в узком смысле) называется пространство постоянной положительной кривизны. Его наглядный образ - поверхность обычной сферы, на которой кратчайшая линия не является прямой.

    Итак, с точки зрения ОТО пространство нашего мира не обладает постоянной нулевой кривизной. Кривизна его меняется от точки к точке и определяется полем тяготения. И время в разных точках течет по-разному. Поле тяготения является не чем иным, как отклонением свойств реального пространства от свойств идеального (евклидова) пространства. Поле тяготения в каждой точке определяется значением кривизны пространства в этой точке. При этом искривление пространства-времени определяется не только полной массой вещества, из которого слагается тело, но и всеми видами энергии, присутствующими в нем, в том числе энергии всех физических полей. Так, в ОТО обобщается принцип тождества массы и энергии СТО: Е = mc2. Таким образом, важнейшее отличие ОТО от других физических теорий состоит в том, что она описывает тяготение как воздействие материи на свойства пространства-времени, эти свойства пространства-времени, со своей стороны, влияют на движение тел, на физические процессы в них.

    В ОТО движение материальной точки  в поле тяготения рассматривается как свободное «инерциальное» движение, но происходящее не в евклидовом, а в пространстве с изменяющейся кривизной. В результате движение точки уже не является прямолинейным и равномерным, а происходит по геодезической линии искривленного пространства. Отсюда следует, что уравнение движения материальной точки, а также и луча света должно быть записано в виде уравнения геодезической линии искривленного пространства. Для определения кривизны пространства необходимо знать выражение для компонент фундаментального тензора (аналога потенциала в ньютоновской теории тяготения). Задача заключается в том, чтобы, зная распределения тяготеющих масс в пространстве, определить функции координат и времени (компонент фундаментального тензора); тогда можно записать уравнение геодезической линии и решить проблему движения материальной точки, проблему распространения светового луча и т.д.

    Эйнштейн  нашел общее уравнение гравитационного  поля (которое в классическом приближении  переходило в закон тяготения  Ньютона) и таким образом решил  проблему тяготения в общем виде. Уравнения гравитационного поля в общей теории относительности представляют собой систему из 10 уравнений. В отличие от теории тяготения Ньютона, где есть один потенциал гравитационного поля, который зависит от единственной величины — плотности массы, в теории Эйнштейна гравитационное поле описывается 10 потенциалами и может создаваться не только плотностью массы, но также потоком массы и потоком импульса.

    Еще одно кардинальное отличие ОТО от предшествующих ей физических теорий состоит в отказе от ряда старых понятий и формулировке новых. Так, ОТО отказывается от понятий «сила», «потенциальная энергия», «инерциальная система», «евклидов характер пространства-времени» и др. В ОТО используют нежесткие (деформирующиеся) тела отсчета, поскольку в гравитационных полях не существует твердых тел и ход часов зависит от состояния этих полей. Такая система отсчета (ее называют «моллюском отсчета») может двигаться произвольным образом, и ее форма может изменяться, у используемых часов может быть сколь угодно нерегулярный ход. ОТО углубляет понятие поля, связывая воедино понятия инерции, гравитации и метрики пространства-времени, допускает возможность гравитационных волн. Гравитационные волны создаются переменным гравитационным полем, неравномерным движением масс и распространяются в пространстве со скоростью света. Гравитационные волны в земных условиях очень слабы. Есть возможность реальной фиксации гравитационного излучения, возникающего в грандиозных катастрофических процессах во Вселенной — вспышках сверхновых звезд, столкновении пульсаров и др. 
 
 
 
 
 
 
 
 
 
 
 
 

Список  использованной литературы

 
 
    1. Альберт Эйнштейн и теория гравитации. – М., 1979. – С. 570.
 
    1. Большая серия  знаний. Химия. – М.: Мир книги, Русское  энциклопедическое товарищество, 2006. – С. 10 - 21.
 
    1. Большая энциклопедия Кирилла и Мефодия, 2007. – www.KM.ru  [электронный мультипортал]
 
    1. Бренан  Р. Словарь научной грамотности. – М: Мир, 1997. – 368с.
 
    1. Грушевицкая Т.Г., Садохин А.П., Концепции современного естествознания: Учебник для вузов. – М., 2002.
 
    1. Ильченко  В.Р. Перекрёстки физики, химии и биологии. – М.: Просвещение, 1986. – С.134 – 140.
 
    1. Найдыш  В.М., Концепции современного естествознания: учебник. – изд. 2-е, перераб. и доп. – М.: Альфа-М, ИНФРА-М, 2004.
 
    1. Философские проблемы естествознания. – М.: Высшая школа, 1985.
 
    1. Эйнштейн А., Инфельд Л., Эволюция физики. – М., 1965.

Информация о работе Химические взаимодействия во Вселенной