Автор работы: Пользователь скрыл имя, 29 Ноября 2011 в 10:38, контрольная работа
Наука не только решает задачи, которые ставит перед собой сегодняшний день, но и подготовляет завтрашний день техники, медицины, сельского хозяйства, межзвездных полётов, покорения природы. Одна из самых перспективных наук – генетика, изучающая явления наследственности и изменчивости организмов. Наследственность – одно из коренных свойств жизни, она определяет воспроизведение форм в каждом последующем поколении. И если мы хотим научиться управлять развитием жизненных форм, образованием полезных для нас и устранением вредных, - мы должны понять сущность наследственности и причины появления новых наследственных свойств у организмов.
ВВЕДЕНИЕ……………………………………………………………………..…3
1.ГЕННАЯ ИНЖЕНЕРИЯ………………………………………………………..4
1.1 Генетическая информация……………………………………………………7
1.2 Генетическая карта……………………………………………………………8
1.3 Генетический анализ………………………………………………………….9
2. СТАНОВЛЕНИЕ И ВОЗМОЖНОСТИ ГЕННОЙ ИНЖЕНЕРИИ…………11
3. ГЕННАЯ ИНЖИНЕРИЯ ЧЕЛОВЕКА………………………………………14
ЗАКЛЮЧЕНИЕ………………………………………………………………….16
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ……………………………..17
Уже
в 80-ых гг. генная инженерия могла
дать в неограниченном количестве гормоны
и другие белки человека, необходимые
для лечения генетических болезней
(например, инсулин, гормон роста и
другие). Величайшее же открытие, сделанное
учеными в 2000 году – расшифровка генома
человека, что позволило клонировать органы
человека.
2. СТАНОВЛЕНИЕ И ВОЗМОЖНОСТИ ГЕННОЙ ИНЖЕНЕРИИ
Значительный прогресс достигнут в практической области создания новых продуктов для медицинской промышленности и лечения болезней человека
В
настоящее время
Кроме этого учёные занимаются поиском генов, кодирующих новые полезные признаки. Ситуация в этой области меняется радикальным образом, прежде всего, существованию публичных баз данных, которые содержат информацию о большинстве генов, бактерий, дрожжей, человека и растений, а также в следствии разработки методов, позволяющих одновременно анализировать экспрессию большого количества генов с очень высокой пропускной способностью. Применяемые на практике методы можно разделить на две категории:
Методы,
позволяющие вести
Позиционное клонирование, заключается в создании за счет инсерционного мутагенеза мутантов с нарушениями в интересующем нас признаке или свойстве, с последующим клонированием соответствующего гена как такового, который заведомо содержит известную последовательность (инсерция).
Вышеназванные методы не предполагают ни каких изначальных сведений о генах, контролирующих тот или иной признак. Отсутствие рационального компонента в данном случае является положительным обстоятельством, поскольку неограничен нашими сегодняшними представлениями о природе и генном контроле конкретного интересующего нас признака.[2]
Кроме всего этого ученными, разрабатывается проект «Геном человека». Цель этого проекта заключается в выяснении последовательности оснований во всех молекулах ДНК в клетках человека. Одновременно должна быть установлена локализация всех генов, что помогло бы выяснить причину многих наследственных заболеваний и этим открыть пути к их лечению. Что бы последовательно приближаться к решению проблемы картирование генов человека, было сформулировано пять основных целей:
Ожидалось, что, когда все указанные цели будут постигнуты, исследователи определят все функции генов и разработают методы биологического и медицинского применения полученных данных.
Рассмотрев темпы ускорения работы в рамках проекта «Геном человека», руководители этого проекта объявили 23 октября 1998г., что программа будет полностью завершена гораздо раньше, чем планировалось, и сформулировали «Новые задачи проекта «Геном человека»:
Международное
общество секвенирование в феврале 1996
года приняло решение о том, что любая
последовательность нуклиотидов размером
1-2 Кб должна быть обнародована в течение
24 часов после ее установления.
3. ГЕННАЯ ИНЖИНЕРИЯ ЧЕЛОВЕКА
В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков.
Задача изменения генома взрослого человека несколько сложнее, чем выведение новых генноинженерных пород животных, поскольку в данном случае требуется изменить геном многочисленных клеток уже сформировавшегося организма, а не одной лишь яйцеклетки-зародыша. Для этого предлагается использовать вирусные частицы в качестве вектора. Вирусные частицы способны проникать в значительный процент клеток взрослого человека, встраивая в них свою наследственную информацию; возможно контролируемое размножение вирусных частиц в организме. При этом для уменьшения побочных эффектов учёные стараются избегать внедрения генноинженерных ДНК в клетки половых органов, тем самым избегая воздействия на будущих потомков пациента. Также стоит отметить значительную критику этой технологии в СМИ: разработка генноинженерных вирусов воспринимается многими как угроза для всего человечества.
С помощью генотерапии в будущем возможно изменение генома человека. В настоящее время эффективные методы изменения генома человека находятся на стадии разработки и испытаний на приматах. Долгое время генетическая инженерия обезьян сталкивалась с серьёзными трудностями, однако в 2009 году эксперименты увенчались успехом: в журнале Nature появилась публикация об успешном применении генноинженерных вирусных векторов для исцеления взрослого самца обезьяны от дальтонизма.[1] В этом же году дал потомство первый генетически модифицированный примат (выращенный из модифицированной яйцеклетки) — игрунка обыкновенная.[2]
Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия.[5] Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.
Однако возможность внесения более значительных изменений в геном человека сталкивается с рядом серьёзных этических проблем.
Конечно в будущем современный мир не может обойтись без дальнейших разработок в генной инженерии, благодаря, этой науке человек может получить новые сорта растений, и излечить себя от болезней на которые сейчас нет лекарств, но нужно с большой осторожностью относиться к новым открытиям.
Если
человек поедет по неправильному
пути развитию в генетики, можно
разрушить все живое на планете
в том числе и самих себя.
ЗАКЛЮЧЕНИЕ
Совершенно ясно, что главное при разработке правил и законов, регулирующих применение генных технологий,— это создать рациональные концепции оценки риска. Действительно, как оценить риск того, чего еще никогда не случалось.
Первый шаг в этом направлении — установить, какие именно опасности могут возникнуть и как их избежать. Следующий шаг — оценить степень риска. Уменьшить риск можно, если определить категории опасности патогенов и использовать для работы с ними соответствующее защитное оборудование. По мере накопления конкретных знаний о конкретных опасностях оценки следует уточнять.
Есть документы, регламентирующие применение генных технологий. Это директивы, касающиеся правил безопасной работы в лабораториях и в промышленности, а также правила внесения генетически модифицированных организмов в окружающую среду. В большинстве европейских стран, как и положено, подобные директивы включены в свод национальных законов, а это, согласимся, уже немало.
Общий
вывод меморандума ФЕМО таков: “При
осмотрительном применении генных технологий
польза от них сильно перевесит риск
отрицательных последствий; технологии
конструирования рекомбинантных ДНК
внесут существенный вклад в здравоохранение,
в развитие устойчивого сельского хозяйства,
в производство пищи, в очистку окружающей
среды”.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ