Генная инженерия: её возможности и перспективы развития

Автор работы: Пользователь скрыл имя, 25 Марта 2011 в 23:52, контрольная работа

Описание работы

Генная инженерия - направление исследований в генетике и, молекулярной биологии конечной целью которых является получение с помощью лабораторных приемов организмов с новыми, в том числе и не встречающимися в природе, комбинациями наследственных свойств. В основе генной инженерии лежит обусловленная последними достижениями молекулярной биологии и генетики возможность целенаправленного манипулирования с фрагментами нуклеиновых кислот.

Содержание работы

Введение ………………………………………………………… ……3



1. История появления генетики………………………………….......4

2. Наследственность по хромосомной теории…………………..6

3. Развитие генной инженерии……………………………………8

4. Химический синтез ДНК……………………………………….10


5.Успехи, возможности, и перспективы в генной инженерии….11


Заключение……………………………………………………………..12


Литература………………………………………………………………13

Файлы: 1 файл

3.docx

— 32.94 Кб (Скачать файл)

Контрольная  работа

по предмету:

«Концепции  современного естествознания»

на тему:

    «Генная инженерия: её возможности и     перспективы развития» 
     
     
     
     

                                                  Выполнил:  студент 3 курса

                                     заочного отделения

                                                       психологического факультета

                                      Кулагин Александр

                      Проверил:

                                                             ____________________________ 
 
 
 
 
 
 
 

                                                       Пенза 2010

                                         

                                              Содержание 
 

 Введение ………………………………………………………… ……3           

    

1.  История появления  генетики………………………………….......4                                                                                                                                    

     2. Наследственность по хромосомной теории…………………..6

     3. Развитие генной инженерии……………………………………8

     4. Химический синтез ДНК……………………………………….10 

     5.Успехи, возможности, и перспективы в генной инженерии….11 

Заключение……………………………………………………………..12 

Литература………………………………………………………………13 

                                                 
 
 
 
 
 
 
 

                                                  Введение

    Генная  инженерия -  направление исследований в генетике и, молекулярной биологии конечной целью которых является получение с помощью лабораторных приемов организмов с новыми, в том числе и не встречающимися в природе, комбинациями наследственных свойств. В основе генной инженерии лежит обусловленная последними достижениями молекулярной биологии и генетики возможность целенаправленного манипулирования с фрагментами нуклеиновых кислот. К этим достижениям следует отнести: установление универсальности генетического кода, то есть факта, что у всех живых организмов включение одних и тех же аминокислот в белковую молекулу кодируются одними и теми же последовательностями нуклеотидов в цепи ДНК; успехи генетической энзимологии, предоставившей в распоряжение исследователя набор ферментов, позволяющих получить в изолированном виде отдельные гены или фрагменты нуклеиновой кислоты, осуществлять синтез фрагментов нуклеиновых кислот, объединить в единое целое полученные фрагменты. Таким образом, изменение наследственных свойств организма с помощью генной инженерии сводится к конструированию из различных фрагментов нового генетического материала, введение этого материала в рецепиентный организм, создания условий для его функционирования и стабильного наследования. Долгое время вопрос о природе наследственности находился в ведении эмбриологии, в которой вплоть до XVII в. господствовали фантастические и полуфантастические представления. Во второй половине XVIII в. учение о наследственности обогащается новыми данными искусственной гибридизацией и опылением растений, установлением пола у растений, а также отработкой методики гибридизации. Одним из основоположников этого направления является И.Г. Кельрейтер, он тщательно изучал процессы оплодотворения и гибридизации.  Открыл

явление гетерозиса — более мощного развития гибридов первого поколения,

                                                                                                                                 3

которое не мог правильно объяснить. Опыты по искусственной гибридизации растений позволили опровергнуть концепцию преформизма.  

                                   История появления генетики                                                                    

В  самом  начале XIX в. считалось, что наследственные признаки гибрида являются результатом взаимодействия материнских и отцовских компонентов, их борьбы между собой, и исход этой борьбы определяется количественным участием, долей этих компонентов. В первой           половине XIX в.  появились  первые предпосылки учения о наследственности и изменчивости — генетики. Идея единства растительного и животного миров должна была получить научное выражение в форме теории, которая базируется на том, что инвариантные характеристики органического мира должны иметь свое морфологическое выражение, проявляться в определенной структурной гомологии организмов. Второе событие выделение явлений наследственности как специфической черты живого, которую не следует растворять в множестве свойств индивидуального развития организма. Такой подход сформулирован у О. Сажрэ и в полной мере получил свое развитие в творчестве  Г.Менделя. Разработка клеточной теории было важнейшим шагом на пути научных воззрений на наследственность и изменчивость. Основной философской идеей, которая привела к открытию клетки, была идея единства растительного и животного миров.  Еще в XVII в., она разворачивалась с трудов Р. Декарта, Г.ВЛейбница, а позже — французских материалистов XVIII в., особенно Д.Дидро, Ж. Ламетри и др.  Ориентировочно для биологических исследований она была сформулирована К.Ф. Вольфом, Л. Океном, Ж.Бюффоном, И.В. Гете, Э. Жоффруа Сент-Илером и др.  Следующий шаг на этом пути состоял в том, чтобы от общей идеи единства органического

                                                                                                                               4                                                                                                                                                          

мира  прийти к выводу, что такое единство должно иметь свое морфологическое  выражение, проявляться в определенной структурной гомологии организмов. Именно в этом направлении работали многие ученые (П.Ж. Тюрпен, Я.Пуркине, Г. Валентина, А. Дютроше и др.), но только          Т.Шванну удалось окончательно прояснить данный вопрос. Трудность состояла в том, что растительные и животные клетки, с одной стороны, а также клетки разных тканей животных — с другой, выглядят мало похожими друг на друга. Сходным и легко различимым элементом всех клеток является ядро. Мысль об этом сформулировал М. Шлейден. Опираясь на нее,               Т. Шванн разработал основные положения своей клеточной теории. В основе ее лежало утверждение, что клеткообразование — универсальный принцип развития организма .  Клетка была выделена как универсальная инвариантная единица строения организма. Из основ клеточной теории стало ясно, что процесс клеткообразования регулируется каким-то единым, универсальным механизмом, за которым скрывается загадка наследственности и изменчивости. Другими словами, создание клеточной теории позволяло “выйти” на объект генетики. Важную роль в истории учения о наследственности занимает творчество О. Сажрэ. Он первый в истории учения о наследственности начал исследовать не все, а лишь отдельные признаки скрещивающихся при гибридизации растений. С работ Сажрэ начинается собственно научная генетика. Он первым понял корпускулярный, дискретный характер наследственности и выделил наследственность как специфический объект познания, отличный от процесса индивидуального развития организма, разграничил предмет генетики от предмета эмбриологии и онтогенетики. Вторая половина XIX в. - период создания важнейших отраслей: биологической науки — эмбриологии (К. Бэр); цитологии         (М.Шлейден, Т. Шванн, Р.Вирхов, Г. Моль); физиологии (Г. Гельмгольц,     Э. Дюбуа-Реймон, К. Бернар); основы органической химии (Ф. Велер,

                                                                                                                             5

       

Ю. Либих, М. Бертло); получены результаты в области гибридизации и                                                             явлений наследственности (Ш. Нодэн, Г. Мендель). Среди важнейших открытий данного периода можно указать следующие: описание митотического деления клеток и особенностей поведения хромосом         (И.Д. Чистяков, Э. Страсбурге); установление того, что первичное ядро зародышевой клетки возникает путем слияния ядер сперматозоидов и яйцеклетки (О. Гертвиг, Г. Фоль); открытие продольного разделения хромосом и его закономерностей — образование веретена, расхождение хромосом к полюсам ( В. Флемминг); установление закона постоянства числа хромосом для каждого вида (Т.Бовери, Э. Страсбурге); установление того, что в половых клетках содержится половинный набор хромосом по сравнению с соматическими клетками (Э.ван Бенеден); описание процесса майоза и объяснение механизма редукции числа хромосом (В. И. Беляев,     О. Гертвиг). Важнейшим событием в генетике XIX в. было формулирование Г.Менделем его знаменитых законов. Из работ Сажрэ, Мендель рассматривал не наследуемость всех признаков организма сразу, а выделял наследуемость единичных, отдельных признаков, абстрагируя эти признаки от остальных, удачно применяя при этом вариационно-статистический метод, демонстрируя эвристическую мощь математического моделирования в биологии. Открытие Менделем закономерностей расщепления признаков показало, что возникающие у организмов рецессивные мутации не исчезают, а сохраняются в популяциях в гетерозиготном состоянии.

                    Наследственность по хромосомной теории

Важнейшим событием в XX в явилось появление экспериментальной генетики и новое открытие законов Менделя. В 1900 г. законы Менделя были

                                                                                                                              6

открыты по новому независимо сразу тремя учеными — Г. де Фризом в Голландии, К. Корренсом в Германии, Э.Чермаком в Австрии. За относительно короткий срок в учении о наследственности был накоплен большой эмпирический и теоретический материал. К открытиям пришедшим в этот период можно отнести: открытие дискретного характера наследственности; обоснование представления о гене и хромосомах как носителях генов; представление о линейном расположении генов; доказательство существования мутаций и возможность вызывать их искусственно; установление принципа чистоты гамет, законов доминирования, расщепления и сцепления признаков; разработка методов гибридологического анализа, чистых линий и инцухта, кроссинговера (нарушение сцепления генов в результате обмена участками между хромосомами) и др. Важно, что все эти и другие открытия были экспериментально подтверждены, и строго обоснованы. В первой четверти XXв. интенсивно развивались и теоретические аспекты генетики. Особую роль сыграла хромосомная теория наследственности, разработанная в 1910, 1915 гг. в трудах А. Вейсмана, Т. Моргана, А.Стертеванта, Г.Дж. Меллера и др. Она строилась на следующих исходных абстракциях: хромосома состоит из генов; гены расположены на хромосоме в линейном порядке; ген — неделимая корпускула наследственности, “квант”; в мутациях ген изменяется как целое. Первое время среди представителей различных концепций наследственности было очень много споров. Преодоление противоречий между генетикой и эволюционной теорией стало возможным с созданием синтетической теории эволюции, которая выступает основанием всей системы современной эволюционной биологии. Синтез генетики и эволюционного учения был качественным скачком в развитии как генетики, так и эволюционной теории. Принципиальные положения синтетической теории эволюции были заложены работами С. С. Четверикова, а также

                                                                                                                              7

Р.Фишера, С. Райта, Дж. Холдейна, Н.П. Дубинина и др. Непосредственными                                                                 предпосылками для синтеза генетики и теории эволюции выступали: хромосомная теория наследственности, биометрические и математические подходы к анализу эволюции. В основе этой теории лежит представление о том, что элементарной “клеточкой” эволюции является не организм и не вид, а популяция. Наследственное изменение популяции в каком-либо определенном направлении осуществляется под воздействием ряда эволюционных факторов (изменяющих генотипический состав популяции): мутационный процесс (поставляющий элементарный эволюционный материал), популяционные волны (колебания численности популяции в ту или иную сторону от средней численности входящих в нее особей), изоляция (закрепляющая различия в наборе генотипов и способствующая делению исходной популяции на несколько самостоятельных), естественный отбор (процесс, определяющий вероятность достижения индивидами репродукционного возраста). Популяция — та реальная целостная система взаимосвязи организмов, которая обладает всеми условиями для саморазвития, способностью наследственного изменения в смене биологических поколений. Элементарной единицей наследственности выступает ген (участок молекулы дезоксирибонуклеиновой кислоты — ДНК, отвечающий за развитие определенных признаков организма). Естественный отбор является ведущим эволюционным фактором, направляющим эволюционный процесс. Формирование синтетической теории эволюции ознаменовало переход к популяционной концепции, сменившей организмоцентрическую. Это открыло качественно новый этап в развитии биологии — переход к созданию единой системы биологического знания, воспроизводящей законы развития и функционирования органического мира как целого.

                              

                                                                                                                               8

                                 Развитие генной инженерии  

Как раздел молекулярной биологии генная инженерия  возникла в 1970-е гг. Её задачи были связанны созданием различных комбинаций генетического материала, способного размножаться (в клетке) и синтезировать  конечные продукты.  В создании этих комбинаций  играют особые ферменты (рестриктазы, ДНК-лигазы).  Рассекая молекулу ДНК на фрагменты в строго определенных местах, они соединяют эти фрагменты ДНК в единое целое.  Создание искусственных гибридных генетических структур  рекомбинантных  ДНК стало возможным после выделения таких ферментов. Такая молекула ДНК содержит искусственный гибридный ген (или набор генов) и «вектор-фрагмент» ДНК, обеспечивающий размножение рекомбинированной ДНК и синтез ее конечных продуктов — белков. Все это уже происходит в клетке-хозяине (бактериальной клетке), куда вводится рекомбинированная ДНК. Методами генной инженерии сначала были получены трансгенные микроорганизмы, несущие гены бактерии и гены онко-генного вируса обезьяны, а затем — микроорганизмы, несущие в себе гены мушки дрозофилы, кролика, человека и т.д. Впоследствии удалось осуществить микробный (и недорогой) синтез многих биологически активных веществ, присутствующих в тканях растений и животных в низких концентрациях: интерферона и гормона роста человека, инсулина, вакцины против гепатита, а также клеточных гибридов, синтезирующих антитела желаемой специфичности, ферментов гормональных препаратов, и т.п. Трансгенная биотехнология, занимается конструированием и применением трансгенных организмов. В неразрывной связи с генной инженерией развиваются фундаментальные исследования в молекулярной биологии. Направлениями молекулярной биологии и генной инженерии является изучение геномов растительных и животных видов и разработка способов их реконструкции. В отличие от генотипа геном представляет собой

                                                                                                                              9

характеристику  вида, а не отдельной особи. Геном  — это совокупность генов, характерных  для гаплоидного, т.е. одинарного набора хромосом данного вида организмов. Исследования ведет молекулярную биологию от выяснения способов воссоздания  генома вида к разработке способов воссоздания генотипа особи. Известно что геном человека состоит из 3 млрд нуклеотидов, из них30 млн (около 10% всей хромосомной ДНК) объединены

Информация о работе Генная инженерия: её возможности и перспективы развития