Галактики

Автор работы: Пользователь скрыл имя, 09 Ноября 2009 в 13:40, Не определен

Описание работы

Реферат по курсу: Концепция современного естествознания

Файлы: 1 файл

Челябинский Государственный Университет.doc

— 121.50 Кб (Скачать файл)

      Здесь уместно вспомнить пророческий  идее Ньютона, высказанной около 300 лет тому назад в письме к ректору колледжа в Кембридже Р. Бантли. Ньютон писал: "Но если бы вещество было равномерно рассеяно по бесконечному пространству, оно никогда не собралось бы в единую массу. Часть его могла бы собраться в одну массу, а часть - в другую, так что образовалось бы бесконечное число больших масс, разбросанных по бесконечному пространству на огромных расстояниях друг от друга".

      Именно  эта мысль гениального Ньютона  является одним из краеугольных камней современных теорий образования  крупномасштабных структур вселенной.

      Второе  важное обстоятельство, которое мы должны принять во внимание: так  называемые малые возмущения, флуктуации - небольшие отклонения от однородности и изотропии.

      Постараемся понять физический смысл роста начальных  флуктуаций плотности, но происхождение флуктуаций, из которых в конце концов возникает галактика, остается загадкой. Попробуем более подробно рассмотреть, какие процессы могут происходить в изначально полностью однородной и изотропной среде. Вообще говоря, такая среда не может быть устойчивой, поскольку в ней действуют различные силы.

      В такой среде действует лишь одна сила - тяготение. Ведь в этой среде  нет ни перепадов давления, ни потоков, ни каких-либо других неоднородных веществ. И тем не менее этой силы оказывается  вполне достаточно, чтобы нарушить однородность исходной среды и создать в ней неоднородности. Именно эта сила и создает первичные "куски" вещества в измельченной однородной Вселенной.

      Как это происходит? Представим себе для  наглядности, что в каком-то районе среды немного повысилась ее плотность, или, иными словами, возникла флуктуация плотности. В соответствии с законом всемирного тяготения частицы среды начнут притягиваться к участку с большей плотностью и тем самым стремиться еще больше увеличить плотность этого участка.

      Но  мы пока не учитывали силу, которая  неизбежно возникает при увеличении плотности и начнет противодействовать силе гравитации. Эта сила - перепад  давления. В данном случае, именно возрастание  давления прекращает в конце концов процесс сжатия.

      Разумеется, схема, которую мы здесь нарисовали, чересчур упрощена, носит слишком качественный характер и может вызвать недоумение. Ведь применительно к расширяющейся Вселенной необходимо учитывать характер расширения. Кроме того, хорошо было бы знать и размеры, и массу первоначальных сгущений.

      Анализ  процессов гравитационной неустойчивости в однородной покоящейся среде привел к понятию "дешенсовой массы" и "дешенсова размера" (в честь Д. Дешенса - знаменитого английского астронома, занимавшегося вопросом гравитационной неустойчивости). Дешенсовая длина - это критический размер участка нашей среды, при котором сила тяготения сравнима с перепадом давления в объеме этого участка.

      Дешенсова масса - это масса участка, обладающего  критическим размером.

      Что дает нам понятия критической длинны и массы? Флуктуация - это такое образование, которое обязано или жить и развиваться, или в конце концов исчезнуть. Статической она быть не может. Судьба флуктуации полностью определяется результатом конкурентной борьбы гравитации и перепада давления, а критическая масса и размер - количественный критерий этого результата. Естественно, что Дешенсовая длина прямо пропорциональна плотности среды.

      Если  размеры сгущения меньше критической  длины Дешенса, то сила давления преобладает  над гравитационной, и сгущение начинает расширяться. Если же размеры превышают  критическую длину Дешенса, то плотность  сгущений будет расти.

      Качественная  картина возникновения и роста сгущений справедлива лишь для бесконечной, однородной среды. Над этим работал академик Е. Лифшиц. Теория, развитая Е. Лифшицем, позволяет аккуратно и точно рассчитывать временную эволюцию сгущений и их начальную величину. Мы уже говорили о процессах конденсации влаги в атмосфере. В них велика роль флуктуации плотности. Эти флуктуации возникают из-за случайного повышения плотности воздуха в силу хаотического давления молекул газовой среды. Не представляет особенной сложности оценить величину чисто тепловой флуктуации плотности, в системе N частиц. Это может быть атмосфера, Район Вселенной, содержащий число частиц, соответствующий числу частиц в нашей Галактике (около 1068). Поскольку для любой термодинамической системы относительное значение флуктуации плотности равно 1/SQR (N), то для N=1068 относительная величина теплового возмущения плотности равна 10-34. Относительная величина возмущения плотности определяется как (Pф - Рс) /Pс, где Pф - плотность в районе возмущения, а Pc - средняя плотность среды. Но теория Лифшица требует, чтобы в момент времени равный одной секунде после Большого взрыва, во Вселенной существовали начальные возмущения, относительная величина которых никак не меньше 10-17. Казалось бы, очень маленькая величина, но она на 17 порядков превышает значение чисто тепловых флуктуаций. Именно вопрос о том, какие процессы в ранней Вселенной могли привести к появлению флуктуаций требуемой величины, мучают теоретиков уже многие годы.

      Число нерешенных проблем в этой области  как туман закрывают от нас таинственное происхождение галактик.

      А вопрос этот принципиальный. Ведь наблюдательные данные свидетельствуют о том, что  в необозримых просторах Вселенной  галактики образуют огромные космические  соты - сверхскоростные, окружающие гигантские "черные области" - пустоты.

      Расчеты показывают, что сжатие вещества будет  анизотропным. Объем может меняться от формы куба до пластины. Такую  пластину назвали "блином". Первоначально изолированные друг от друга плоские "блины" очень скоро вырастают в плоские слои. Эти слои перемещаются, и в процессе их взаимодействия образуется ячеисто - сетчатая структура, где стенками пустот служат блины. Отдельные блины представляют собой сверхскопление галактик, имеющее уплощенную форму. Существуют и другие подходы к проблеме структурирования.

      Теория  блинов оперирует лишь со сверхструктурой  Вселенной, не отвечая на вопрос о  происхождении более мелких образований - галактик. Для решения этого  вопроса вернемся к массе Дешенса.

      Тщательный  анализ эволюции возмущений плотности  различных типов в нашей Вселенной показывает, что ко времени рекомбинации остается два выделенных масштаба масс: 106 и1012 солнечных масс. Массы шаровых скоплений составляют около миллиона солнечных масс, а массы наиболее массивных галактик и небольших скоплений приближаются к величине 1012 масс Солнца.

      Безусловно, этот факт заслуживает внимания. Появилась  очередная гипотеза, согласно которой  из первичных возмущений с массой 105 - 106 масс Солнца возникло "все" - и шаровые скопления, и галактики, и скопления галактик. В этой теории существенно то обстоятельство, что масса исходного сгустка, сравнима с массой Дешенса. Поэтому, силы давления также сравнимы с силами гравитации.

Свойства  галактик

 

      Сегодня нам хорошо известно, что эллиптические  образования во Вселенной не туманности, а звездные системы. Вопрос эволюции уже образовавшихся звездных систем - галактик, заставляет нас обратить внимание и на их вращение, взаимодействие друг с другом, причин морфологических различий и т.д.

      Одним из достаточно сложных и интересных вопросов является проблема очень широкого диапазона масс галактик. Для объяснения этой проблемы можно предположить, что определенную роль в образовании галактик играла не только газовая орлагментация, но и слияние первичных галактик.

      В процессе слияния двух галактик поначалу образуется объем совершенно неправильной формы. Но затем эти неправильности сглаживаются, и в результате образуется массивная галактика эллиптической формы. Процесс этот занимает несколько сотен миллионов лет.

      В скоплениях галактик присутствует такой сверхгигантский компонент - галактика-монстр. Их радиус достигает миллиона световых лет, а светимость в 100 раз может превышать светимость нашей Галактики. Такие галактики сначала лишь ненамного превышают другие, но по мере движения по спиральной траектории к центру скопления эта галактика заглатывает более мелкие системы. Конечно, подобные процессы наблюдаются не в каждом скоплении галактик. Иногда взаимодействие галактик может иметь характер лобового столкновения. При таком столкновении центральные области одной из галактик могут быть выброшены наружу. В результате образуется кольцевая структура, представляющая собой неустойчивую, короткоживущую систему.

      Не  только динамика взаимодействия галактик заставляет вспомнить общее космологическое расширение. Существует еще одно немаловажное обстоятельство, связанное со строением галактик, которое может повлиять на характер расширения Вселенной.

      В спиральных галактиках звезды, находящиеся  в диске, обращаются вокруг общего центра масс. Движение звезд, газа и пыли, как и движение планет в Солнечной системе определяется законом всемирного тяготения. На стабильной орбите сила тяготения равна центробежной силе: 

      G*Mr*m  m*V2*r^2

      ------------------ - = - ------------------ - ,

          R2   r 

      где Mr - масса заключенная в пределах от 0 до r.

      Vr - орбитальная скорость массы m. Если масса сосредоточена в центре, то изменение скорости происходит по закону Кеплера. Обычно в галактиках максимум яркости приходится на центр, а к периферии яркость быстро падает. Астрономы предполагали, что орбитальная скорость звезд должна меняться по закону Кеплера, то есть уменьшаться с увеличением расстояния от центра Галактики. В последнее время выполнены тщательные наблюдения вращающихся дисков спиральных галактик. Эти наблюдения принесли сенсационные результаты. Оказалось, что в удаленных от центра галактик районах скорость вращения не уменьшается по мере увеличения радиуса. Более того, в ряде случаев она увеличивается.

      В галактиках есть невидимая масса, корректирующая скорость орбитальных движений. Невидимая масса вполне может остановить расширение Вселенной. После наблюдений, оказалось, что наличие невидимой массы - повсеместное явление.

Наша  Галактика

 

      Гигантская  спиральная система, называемая Млечным  Путем входит в местную систему и является одной из самых больших галактик системы. В мире галактик наш Млечный Путь занимает отнюдь не последнее место. Это гигантская галактика с диаметром диска около 100 тыс. световых лет и толщиной около 30 тыс. световых лет. Масса видимого вещества в Галактике оценивается в 1,5 * 1011 солнечных масс. Но, несмотря на впечатляющую величину массы Млечного Пути, еще большая масса невидимого вещества содержится в короне Галактики. Эта масса оценивается примерно в 1012 масс Солнца. В Галактике звезды рождаются из массивных газопылевых облаков. Сами звезды снова производят газ и пыль, которые поставляются ими в межзвездную среду. Процесс рождения звезд зависит и от космических лучей, а космические лучи, в свою очередь, производятся сверхновыми. Что собой представляют космические лучи? Это заряженные частицы очень высоких энергий. Они приходят на Землю в достаточной мере изотропно, то есть примерно в одинаковых количествах со всех направлений. Они путешествуют в Галактике около десяти миллионов лет. Составными частями нашей Галактики являются космические лучи и магнитные поля. Чрезвычайно важной компонентой Галактики является межзвездная среда. В основном это газ и пыль. Газ - межзвездный водород. Он сконцентрирован в тонком диске, образованном молодыми звездами, и образует отдельные облака. Некоторое количество газа обнаружено вне диска. Водород может присутствовать как в атомарной, так и молекулярной форме. Гигантские молекулярные облака содержат в форме молекулярного водорода значительную часть массы межзвездного газа в Галактике. Их характерный размер составляет 20-30 парсек. Его масса в сотни тысяч раз превышает массу Солнца. Таким образом, гигантские облака молекулярного водорода являются наиболее массивными изолированными объектами в Галактике.

      Массу проблем ставит перед астрономами и центр Галактики. Положение осложняется тем, что центральная область Млечного Пути скрыта от нас вторым важным компонентом межзвездной среды - пылью.

      Центры  галактик проявляют различные формы  активности, и наша Галактика не является исключением. Центральные области Галактики можно подразделить на три характерные зоны. В зоне, имеющей радиус около 4 килопарсек, наиболее интересно резкое падение плотности газа. Образуется своего рода "дырка" в газовом диске Галактики. На расстоянии от центра 600-700 парсек проходит "граница" очень интересного района, который принято называть звездным балджем (от англ. bulge - выпуклость). Эта область и по "форме" и по "содержанию" напоминает небольшую эллиптическую галактику, вкрапленную в центр Млечного Пути. Так же как эллиптическая галактика, балдж содержит в основном старые звезды, возраст которых больше среднего возраста звездного населения диска.

Информация о работе Галактики