Черные дыры

Автор работы: Пользователь скрыл имя, 11 Марта 2014 в 18:38, реферат

Описание работы

Вывод Лапласа. Гравитационное поле тем сильнее, чем больше масса тела и чем меньше размер области пространства, в которой это тело сосредоточено. Еще в 1795 г. великий французский математик Пьер-Симон Лаплас, исследуя распространение света в поле тяготения, пришел к выводу, что в природе могут встречаться тела, абсолютно черные для внешнего наблюдателя. Поле тяготения таких тел настолько велико, что не вы пускает наружу лучей света. На языке космонавтики 9то означает, что вторая космическая скорость была бы больше скорости света с. Вывод Лапласа основывался на следующем рассуждении.

Файлы: 1 файл

Реферат черные дыры(Физика).docx

— 63.09 Кб (Скачать файл)

 

ЧТО ТАКОЕ ЧЕРНАЯ ДЫРА?

Вывод Лапласа. Гравитационное поле тем сильнее, чем больше масса тела и чем меньше размер области пространства, в которой это тело сосредоточено. Еще в 1795 г. великий французский математик Пьер-Симон Лаплас, исследуя распространение света в поле тяготения, пришел к выводу, что в природе могут встречаться тела, абсолютно черные для внешнего наблюдателя. Поле тяготения таких тел настолько велико, что не вы пускает наружу лучей света. На языке космонавтики 9то означает, что вторая космическая скорость была бы больше скорости света с. Вывод Лапласа основывался на следующем рассуждении. Для того чтобы преодолеть гравитационное притяжение, создаваемое телом с массой М, и улететь на бесконечность, пробное тело на поверхности этого тела радиуса R должно обладать скоростью V, такой, что V2/2>=GM/R. Считая, что это соотношение применимо для света, мы вместе с Лапласом приходим к заключению, что если масса объекта сосредоточена в области с радиусом, меньшим так называемого гравитационного радиуса тела? Rg :Rg= =2GМ/с2~=~1,5-10-28 М (масса М измеряется в граммах, Rg — в сантиметрах), то даже свет не выйдет за пределы этой области. Для Солнца гравитационный радиус — около 3 км, для Земли — порядка 1 см.

Теория Эйнштейна — ключ к проблеме черных дыр. Вывод Лапласа, строго говоря, является ошибочным, поскольку он основан на классической механике и 'теории тяготения Ньютона. В действительности, однако, нельзя пользоваться ни той, ни другой: распространение света подчиняется законам релятивистской механики, а сильное поле тяготения, т. е. поле, гравитационный потенциал которого phi = GM/R в единицах с2 порядка единицы: phi/с2~1, описывается общей теорией относительности. Тем не менее, как это иногда случается в истории науки, обе “ошибки” Лапласа точно скомпенсировали друг друга, и вывод о невозможности выхода световых сигналов из-под гравитационного радиуса оказался совершенно правильным. Более того, связанный со специальной теорией относительности и справедливый в общей теории относительности запрет на существование в природе сигналов, переносящих информацию со скоростью, большей скорости света, придал утверждению о невозможности получения какой-либо информации о событиях, происходящих под гравитационным радиусом, еще более категорический смысл.

Подобное тело, сжатое до размера своего гравитационного радиуса, получило название черной дыры, а границу черной дыры, т. е. поверхность, ограничивающую область, откуда невозможен выход сигналов, стали называть горизонтом событий. Хотя вывод Лапласа о возможности существования черных дыр сохраняется и в общей теории относительности Эйнштейна, само описание этого объекта имеет существенные отличия.

 

ВРАЩАЮЩИЕСЯ И ЗАРЯЖЕННЫЕ ЧЕРНЫЕ ДЫРЫ

Эффект Лензе—Тирринга. Вращение тела может существенно изменить ситуацию. Если скорость вращения велика, то возникающие центробежные силы способны помешать коллапсу тела, приводя, например, к его разрыву на части еще до образования черной дыры. Если масса каждой части меньше критической, то этот процесс фрагментации может вообще предотвратить образование черной дыры. К сожалению, очень трудно провести количественные расчеты в подобном случае. Следует, однако, ожидать, что вращение существенным образом изменит картину коллапса, если первоначальный угловой момент J тела превышает величину GM2/c.

Однако если вращение коллапсирующего тела недостаточно велико, чтобы помешать сжатию его до размеров меньше или порядка гравитационного радиуса

(J/(GM2/c)Q = Gc-2R-3[->J — 3->n(->J->n)]. Здесь ->п — единичный вектор направления оси гироскопа. Измеряя угловую скорость прецессии гироскопа в поле вращающейся черной дыры, можно определить ее угловой момент и тем самым угловой момент сколлапсировавшего тела J.

Эргосфера. По мере приближения к вращающейся черной дыре одновременно усиливаются два эффекта: растет поле тяготения и усиливается эффект увлечения. Точное решение уравнений Эйнштейна, описывающее гравитационное поле вращающейся черной дыры, было получено в 1963 г. Роем Керром, Соответствующая этому решению диаграмма пространства-времени изображена на рис. 3. Анализ решения Керра показывает, что прежде чем мы достигнем горизонта событий, размер которого определяется выражением r = Rq тождественно = GMc-2(1+ + + sqrt(1-(Jc/GM2)2) ), эффект увлечения возрастает на столько, что оказывается невозможным ему противодействовать2. Это приводит к тому, что внутри поверхности, получившей название предела статичности и определяемой условием

r = R*g тождественно = G*M/c2(1+sqrt[1-(Jc/GM2)2cos teta])

все тела увлекаются во вращение по направлению вращения черной дыры (teta — угол от оси вращения). Остановить это вращение, не вылетев наружу за предел статичности, невозможно (для этого потребовалось бы сообщить телу сверхсветовую скорость)

 

Рис, 3. Диаграмма пространства-времени вращающейся черной дыры

вращающейся черной дыры, лежащая между пределом статичности и горизонтом событий, получила название эргосферы. В отличие от области, лежащей под горизонтом событий, в эргосфере частицы могут двигаться, как приближаясь, так и удаляясь от черной дыры, и, в частности, могут покинуть эргосферу, вылетев наружу. Горизонт событий в общем случае играет роль односторонней мембраны, пропуская частицы и сигналы только в одном направлении — внутрь. -

Угловая скорость вращения черной дыры. Падающий наблюдатель пересекает предел статичности и горизонт событий за конечное время по собственным часам, регистрируя при этом лишь непрерывное возрастание приливных сил. Для внешнего наблюдателя процесс приближения к горизонту - событий, как пробной частицы, так и самого коллапсирующего тела затягивается на бесконечно большое (по его часам) время. При этом оказывается, что, подходя к горизонту событий, все те-

Рис. 4. “Вид сверху” по оси вращения на вращающуюся черную дыру. Малые окружности соответствуют положениям фронта волны излучения через малый промежуток времени после испускания волны в точках /, 2, 3, 4. Эффект увлечения в эргосфере настолько велик, что никакое физическое тело не может в ней покоиться относительно удаленного наблюдателя

ла приобретают одну и ту же угловую скорость вращения, равную OMEGA=(J/M)[R2g +(J/Мс)2]-1. Эта величина получила название угловой скорости вращения черной дыры. OMEGA постоянна на поверхности черной дыры. В этом смысле вращение черной дыры напоминает вращение твердого тела. Так же как и при коллапсе невращающегося тела, возрастающее красное смещение при приближении поверхности тела к горизонту и падение по экспоненциальному закону мощности излучения, выходящего к отдаленному наблюдателю, приводят к тому, что через характерные времена порядка Rg /c перестает выходить наружу информация и образуется черная дыра. Заряженные черные дыры. Если коллапсирующее тело обладало электрическим зарядом, то возникающая черная дыра “помнит” об этом. Падение электрического заряда Q в черную дыру приводит к тому, что поток электрического поля через ее поверхность оказывается равным 4piQ в полном соответствии с теоремой Гаусса. Силовые линии электрического поля выходят из черной дыры, и вне ее имеется электрическое поле. Если черная дыра не вращается, то это поле описывается законом Кулона. Вращение заряженной черной дыры с массой М и угловым моментом J приводит к дополнительному появлению дипольного магнитного поля, причем магнитный момент оказывается равным: мю = (Q/M)J. Соответствующее точное решение уравнений Эйнштейна, обобщающее решение Керра на случай, когда черная дыра обладает электрическим зарядом, было получено в 1965 г. в работе группы американских теоретиков во главе с профессором Эзрой Ньюмапом. Как выяснилось позднее, это решение, получившее название решения Керра—Ньюмана, однозначно определяемое тремя параметрами: М - массой, J — угловым моментом и Q —электрическим зарядом, является самым общим из возможных решений, описывающих стационарную черную дыру в пустоте. Геометрические свойства керр-ньюмановской черной дыры весьма сходные с описанными выше свойствами керровской черной дыры.

Поверхность черной дыры при наличии вращения перестает иметь сферическую форму. Площадь поверхности керр-ньюмановской черной дыры равна

A = 4pi [R2g + (J/Mc)2] =4piG2с-4(2M2-Q2/G + 2Мsqrt[M2-Q2/G-J2c2/G2M2]).

При описании свойств черных дыр важную роль играет так называемая поверхностная гравитация kappa

При отсутствии вращения и заряда kappa = c4/GM = GM/R2g

Эта величина характеризует “напряженность” гравитационного поля на поверхности черной дыры.

 

ОБЩИЕ СВОЙСТВА ЧЕРНЫХ ДЫР

Несферический гравитационный коллапс. При сжатии сферически-симметричного тела гравитационное поле вне этого тела остается неизменным (статическим). Это утверждение в общей теории относительности известно как теорема Биркгофа. При коллапсе вращающихся тел и тел несферической формы гравитационное поле оказывается нестационарным — происходит излучение гравитационных волн. Черная дыра, возникающая в результате этого коллапса, также нестационарна, т. е. ее форма и размер зависят от времени. Часть гравитационных волн уходит на бесконечность, другая часть поглощается черной дырой, что приводит к увеличению ее энергии. Если черная дыра предоставлена самой себе, то с течением времени процесс излучения гравитационных волн прекращается и черная дыра становится стационарной.

Замечательным оказывается то, что всякая черная дыра, переходя в стационарное состояние, обязательно

превращается в керровскую или в случае, если тело обладало электрическим зарядом, керр-ньюмановскую черную дыру, свойства которой однозначно определяются значениями трех параметров: М — массы, J — углового момента и Q — заряда. После образования стационарной черной дыры все особенности внутреннего строения сколлапсировавшего тела, наличие в нем источников различных полей, кроме электромагнитного, связанного с зарядом Q,становятся недоступными для наблюдения. Подобные черные дыры, обладающие одинаковыми значениями параметров М, J и Q, неотличимы друг от друга. Все остальные характеристики, которыми обладало коллапсирующее тело (такие, как мультипольные гравитационные и электромагнитные моменты, заряды, связанные с другими взаимодействиями (например, сильным и слабым и т. п.), забываются черной дырой.

Физическая причина этого состоит в следующем. Любое физическое поле, обладая энергией, притягивается черной дырой. Поэтому любой элемент объема с таким полем около черной дыры обладает весом. Связанные с полем натяжения проявляются в виде давления со стороны поля на поверхность объема, приводя к “выталкивающей силе”, аналогичной силе Архимеда. Физическое поле может находиться в равновесии около черной дыры, т. е. быть стационарным, если вес поля в любом элементе объема в точности компенсируется “выталкивающей силой”. Если вне черной дыры нет источников полей, то выполнение этого своеобразного “закона Архимеда” оказывается возможным только для таких конфигураций гравитационного и электромагнитного полей, которые отвечают случаю керр-ньюмановской черной дыры. Во всех остальных случаях элемент поля либо “всплывает”, либо “тонет”. После этого процесса перестройки поля, сопровождаемого излучением, черная дыра сохраняет только те характеристики, которые она не способна сбросить при излучении, — массу, угловой момент и электрический заряд.

Теорема Хокинга. Хотя детальное описание процесса перестройки поля и превращения черной дыры в стационарную представляет собой довольно сложную задачу, этот процесс подчиняется одной общей закономерности, установленной английским физиком С. Хокингом в 1972 г.: площадь поверхности черной дыры не может уменьшаться со временем (рис. 5). Соответствующая


Рис. 5. Возможные процессы с черными дырами. Иллюстрация к теореме Хокинга.

Плоскости t1, t2, t3 обозначают пространственные сечения в соответствующие моменты времени, S0(tl) — площадь черной дыры в момент времени ti. Две черные дыры могут сливаться в одну, черные дыры могут возникать, площадь поверхности одиночной черной дыры возрастает со временем. Одна черная дыра не может распасться на две или более черных дыр. Теорема Хокинга утверждает, что общая площадь поверхностей черных дыр является неубывающей функцией времени.

Теорема была доказана им при самых широких предположениях, среди которых наиболее существенным является предположение о положительности плотности энергии вещества и физических полей, с которыми взаимодействует черная дыра. Это предположение, безусловно, справедливое в рамках классической физики, может, однако, нарушаться при учете квантовых эффектов, Доказательство этой теоремы основано на том, что падение в черную дыру вещества и поля, плотность энергии которых положительна, приводит к возрастанию энергии черной дыры, а, следовательно, и площади ее поверхности. Для невращающейся незаряженной черной дыры в этом легко убедиться, используя связь между массой М и площадью поверхности А: А = 16pi(GM/c2)2, Обратный процесс извлечения вещества и энергии из-под горизонта событий невозможен.

Теорема Хокинга справедлива и в более общем случае, когда имеется несколько черных дыр. При их взаимодействии сумма площадей поверхностей черных дыр не уменьшается со временем. Используя эту теорему, удается, в частности, доказать, что одиночная черная дыра не может распасться на две меньшие черные дыры. Для того чтобы убедиться в этом, предположим сначала, что процесс распада черной дыры с массой М, угловым моментом J и зарядом Q возможен, и в результате этого процесса образуются две далеко отстоящие друг от друга черные дыры с массами М1 и М2, угловыми моментами J1 и J2 и зарядами Q1 и q2. В соответствии с законами сохранения энергии и электрического заряда Q = Q1 + Q2, M>=M1+M2

Неравенство возникает из-за того, что часть энергии при распаде может быть унесена гравитационным, а при наличии заряда — и электромагнитным излучением. Это излучение может унести также полный угловой момент или часть его. Можно убедиться, что эти соотношения противоречат условию возрастания площади поверхности черных дыр: A1+A2>=A.

Информация о работе Черные дыры