Борьба концепций в процессе становления и развития науки о природе света

Автор работы: Пользователь скрыл имя, 16 Февраля 2012 в 11:05, курсовая работа

Описание работы

По-видимому, именно пифагорейцы впервые выдвинули гипотезу об особом флюиде, который испускается глазами и «ощупывает» как бы щупальцами предметы, давая их ощущение. Атомисты же были сторонниками испускания предметами «призраков» или «образов», которые, попадая в глаза приносят душе ощущение формы и цвета теория эта связывается с именем Платона. Согласно Платону, от предметов исходит специальный флюид, который встречается с «мягким светом дня», «ровно и сильно» бьющим из наших глаз. Если оба флюида подобны друг другу, то, встречаясь, они «крепко связываются» и глаз получает ощущение видимого.

Содержание работы

Античные взгляды на природу свет
______________________________________________________3
Взгляд на свет в период раннего средневековья
______________________________________________________4
Опыты по измерению скорости света
______________________________________________________5
Открытия Ньютона о природе цветов
______________________________________________________5
Работы Гюйгенса. Волновая теория света
_____________________________________________________10
Развитие взглядов на волновую теорию света. Работы Френеля
_____________________________________________________11
Электромагнитная теория света. Работы Фарадея и Максвелла
_____________________________________________________15
Давление света
_____________________________________________________17
Поляризация
_____________________________________________________18
Квантовая теория света
_____________________________________________________20
Фотоны
_____________________________________________________23
Заключение
_____________________________________________________24
Список использованной литературы
_____________________________________________________26

Файлы: 1 файл

kurs kse.doc

— 157.00 Кб (Скачать файл)

  «Нельзя сомневаться в том, что свет состоит в движении какого-то вещества».

  Но  в какой же среде распространяется свет? Еще раз установив параллель  между звуком и светом, Гюйгенс  замечает, что этой средой не может  служить воздух, поскольку опыты  с пневматической машиной показали, что свет в отличие от звука распространяется и в пустоте, и постулирует существование некоторой эфирной материи, которая заполняет всю Вселенную, проникает во все тела, чрезвычайно разрежена, так что она не проявляет никаких свойств тяжести, но очень жесткая и упругая. Как видно, Декарт нашел достойного последователя!

  Приняв  существование такого вещества, Гюйгенс  рассматривает механизм распространения  движения. Он начинает с примера  пламени. Каждая точка пламени сообщает движение частицам окружающего эфира, т.е. создает свою собственную волну, а каждая частица эфира, которой достигла волна, становится в свою очередь центром другой, меньшей волны. Таким образом, это движение распространяется от частицы к частице через посредство вторичных сферических волн, подобно тому, как распространяется пожар. Может показаться странным и почти невероятным, что волнообразное движение, вызываемое столь малыми движениями и частицами, способно распространяться на такие огромные расстояния, как отделяющие нас от звезд. На это Гюйгенс отвечает:

  «Но это число перестает быть удивительным, если принять во внимание, что бесконечное  число волн, исходящих правда, из различных точек святящегося  тела, на большом расстоянии от него соединяются для нашего ощущения только в одну волну, которая, следовательно, и должна обладать достаточной силой, чтобы быть воспринятой».

  Это и есть принцип построения огибающей  волны, сделавшей бессмертным имя  Гюйгенса. Он поясняет его рисунком, какой можно увидеть чуть ли не в каждом современном учебнике физики. Ясно, что при таком понимании исчезает световой луч древних греков, исчезает и луч света Ньютона. Лейбниц сразу понял значение концепции и писал Гюйгенсу 22 июня 1964 года:

  «Безусловно, господин Гук никогда бы не пришел к объяснению законов преломления с помощью построенной им картины волновых движений. Вся суть в том, каким образом вы рассматриваете каждую точку луча как излучающую и складываете основную волну со всеми вспомогательными волнами»

  К сожалению, при новом подходе  исчезает и непосредственное интуитивное представление о прямолинейном распространении света. Гюйгенс выдвигает объяснение, утверждая, что за препятствием распространяющиеся там элементарные волны не имеют огибающей и потому остаются незаметными, и делает вывод:

  «В этом смысле можно принимать лучи света за прямые линии».

  Однако  это утверждение остается голословным, так что его можно с равным правом принять или отвергнуть.

  Неудовлетворительное  объяснение прямолинейного распространения  света Гюйгенс возместил блестящим объяснением с помощью своего механизма частичного  отражения, преломления и полного внутреннего отражения – явлений, интерпретация которых вынудила Ньютона осложнять свою теорию, нагромождая одну теорию на другую. По существу эти объяснения Гюйгенса и сейчас приводятся во всех учебниках. Новая теория обладала также тем преимуществом, что для объяснения преломления она в соответствии со здравым смыслом требовала меньшей скорости в боле плотной среде. 

  1. РАЗВИТИЕ  ВЗГЛЯДОВ НА ВОЛНОВУЮ ПРИРОДУ СВЕТА .

  РАБОТЫ  ФРЕНЕЛЯ. 

  Молодой дорожный инженер Огюстен Френель (1788-1827), присоединившийся волонтером к  роялистским войскам, которые должны были преградить дорогу Наполеону во время его возвращения с острова  Эльба, в период Ста дней был уволен со службы и вынужден был удалиться в Матье, близ Каэне, посвятил себя исследованию дифракции, имея в своем распоряжении лишь случайное и примитивное экспериментальное оборудование. Два мемуара, представленных им 15 октября 1815 г. Парижской Академии наук, были первым результатом этих трудов. Френель был приглашен в Париж для повторения своих опытов в более благоприятных условиях.

  Френель начал исследовать тени, отбрасываемые  небольшими препятствиями на пути лучей, и обнаружил образование полос  не только снаружи, но и внутри тени, что до него уже наблюдал Гримальди и о чем умолчал Ньютон. Исследование тени, образуемой тонкой проволокой, привело Френеля к вторичному открытию принципа интерференции. Его поразило, что, если край экрана был расположен вдоль одной стороны проволоки, внутренние полосы исчезали. Итак, подумал он сразу, раз прерывание света от одного из краев проволоки приводит к исчезновению внутренних полос, значит для их образования необходимо совместное действие лучей, приходящих с обеих сторон проволоки.

  «Внутренние каемки не могут образовываться от простого смешения этих лучей, потому что каждая сторона проволоки в отдельности направляет тень только на непрерывный поток света; следовательно, каемки образуются в результате перекрещивания этих лучей. Этот вывод, который представляет собой, так сказать, перевод явления на понятный язык, полностью противоречит гипотезе Ньютона и подтверждает теорию колебаний. Легко можно догадаться, что колебания двух лучей, которые скрещиваются под очень малым углом, могут действовать в противоположные стороны в тех случаях, когда узлы одних волн соответствуют пучностям других».

  В Париже Френель узнал об опытах Юнга с двумя отверстиями, которые  по его мнению, были вполне подходящими  для иллюстрации  волновой природы  света. Тем не менее, для исключения всякой возможности истолкования этого явления как действия краев отверстий Френель придумал известный «опыт с двумя зеркалами», о котором он сообщает в 1816г., а затем в 1819 г. «опыт с бипризмой», ставший с тех пор классическим методом демонстрации принципа интерференции.

  Взяв  на вооружение принцип интерференции, волновая теория располагала теперь тремя принципами: принципом элементарных волн, принципом огибающей и принципом  интерференции. Это были три отдельных  принципа, которые Френель гениально решил слить воедино. Таким образом, для Френеля огибающая волн не просто геометрическое понятие, как для Гюйгенса. В произвольной точке волны полный эффект представляет собой алгебраическую сумму импульсов, создаваемых каждой элементарной волной; полная сумма всех этих импульсов, складывающихся согласно принципу интерференции, может быть, в частности равна нулю. Френель произвел такой расчет, хотя и не вполне строгим способом, и пришел к выводу, что влияние сферической волны во внешней точке сводится к влиянию небольшого сегмента волны, центр которой находится на линии, соединяющей источник света с освещенной точкой; остальная часть волны дает в сумме нулевой эффект в рассматриваемой точке.

  Тем самым было определено препятствие, стоявшее в течение веков на пути утверждения волновой теории – согласование прямолинейного распространения света с его волновым механизмом. Каждая точка вне волны получает свет лишь от очень небольшой ее области, прилегающей к точке, ближайшей к рассматриваемой; все происходит так, как если бы свет распространялся по прямой линии от источника к освещенной точке. Действительно, волны должны огибать препятствия, но это утверждение не следует понимать грубо качественно, поскольку отклонение волны за препятствием зависит от длины волны. Зная длину волны, можно рассчитать, как и насколько отклонится свет за препятствием. Рассматривая явление дифракции, Френель произвел такой расчет, и его результаты прекрасно совпали с экспериментальными данными.

  После нескольких лет перерыва в исследованиях Френель вновь излагает свою теорию в обширном мемуаре о дифракции, представленном в 1818 г. на конкурс Парижской Академии наук. Этот мемуар рассматривался комиссией, состоявшей из Лапласа, Био, Пуассона, Араго и Гей-Люссака. Трое первых были убежденные ньютонианцы, Араго был настроен в пользу Френеля, а Гей-Люссак, по существу, не был компетентен в рассматриваемом вопросе, но был известен своей честностью. Пуассон заметил, что из теории Френеля можно вывести следствия, находящиеся как будто в явном противоречии со здравым смыслом, поскольку из расчета следует, что в центре геометрической тени непрозрачного диска надлежащих размеров должно наблюдаться светлое пятно, а в центре конической проекции небольшого круглого отверстия на определенном расстоянии легко вычисляемом расстоянии должно наблюдаться темное пятно. Комиссия предложила Френелю доказать экспериментально выводы из его теории, и Френель блестяще это выполнил, доказав, что «здравый смысл» в этом случае ошибается. После этого по единодушному предложению комиссии Академия наук присудила ему премию, а в 1823 г. он был избран ее членом.

  После установления теории дифракции Френель  перешел к исследованию явления  поляризации. Корпускулярная теория вынужденная  для интерпретации многочисленных явлений, открытых в первое пятнадцатилетие XIX века, вводить одну за другой различные гипотезы, совершенно необоснованные и порой противоречивые, к этому времени невообразимо усложнилась. В своем опыте с двумя зеркалами, расположенными под углом, Френель получил с помощью одного источника света два мнимых источника, всегда строго когерентных. Он попытался также видоизменить этот прибор, используя два луча, получающихся при двойном лучепреломлении одного луча, и компенсируя надлежащим образом разносить оптических путей обоих лучей. Однако ему никак не удавалось добиться интерференции этих поляризованных лучей.

  Тот факт, что луч, поляризованный при  отражении, обладает двумя плоскостями  симметрии, ортогональными друг другу  и проходящими через луч, мог  натолкнуть на мысль о том, что колебания эфира происходят в этих плоскостях перпендикулярно направлению луча. Эта идея была высказана Френелю Ампером еще в 1815 г., но Френель не воспользовался ею. Юнгу, едва лишь он узнал об опытах Френеля и Араго с поляризованным светом, тоже пришла мысль о поперечных колебаниях, однако то ли из-за неуверенности, то ли благоразумия он говорил об этом как о «воображаемом поперечном движении», т.е. как о понятии чисто фантастическом, - столь бессмысленными с механической точки зрения представлялись ученым того времени поперечные колебания эфира.

  После того как в течение многих лет  Френель пользовался языком теории продольных колебаний, в 1821 году он, не найдя другого пути интерпретации  поляризованных явлений, решился принять  теорию поперечности колебаний. В том же году он пишет:

  «Лишь несколько месяцев тому назад, размышляя  с большим вниманием по этому  поводу, я признал весьма вероятным, что колебательные движения световых волн осуществляются только в плоскости  волн, как для простого, так и  для поляризованного света… Я постараюсь показать, что гипотеза, которую я представляю, не содержит ничего физически невозможного и что она уже не может служить для объяснения основных свойств поляризованного света».

  То, что эта гипотеза может объяснить  основные свойства поляризованного света, было детально показано Френелем; что же касается того, что в этой гипотезе нет ничего физически  невозможного, - это уже совсем другое дело. Из поперечности колебаний следовало, что эфир, будучи тончайшим и невесомым флюидом, должен одновременно быть наитвердейшим телом, тверже стали, ибо только твердые передают поперечные колебания. Эта гипотеза представлялась исключительно смелой, почти безумной. Араго, физик явно не склонный к предрассудкам, тот самый Араго, который был другом, защитником Френеля во всех случаях, не нашел возможным разделить ответственность за эту странную гипотезу и отказался подписать представленную Френелем статью.

  Таким образом, с 1821 г. Френель продолжал  свой путь в одиночку, и это был  путь, полный побед. Гипотеза о поперечности колебаний позволила ему построить свою механическую модель света. Основой ее является эфир, заполняющий всю Вселенную и пронизывающий все тела, причем эти тела вызывают изменение механических характеристик эфира. Из-за  этих изменений, когда упругая волна переходит из свободного эфира в эфир, содержащийся в веществе, на поверхности раздела часть волны поворачивает обратно, а часть проникает в вещество. Тем самым было дано механическое объяснение явления частичного отражения, остававшегося в течение нескольких веков тайной  для физиков. Выведенные Френелем формулы, носящие теперь его имя, сохранили свой вид до наших дней. Скорость распространения колебаний в среде зависит от длины волны,  а при заданной длине волны тем меньше, чем более преломляющей является среда. Отсюда вытекают как следствие преломление света и его дисперсия. В изотропных средах волны имеют сферическую форму с центром в точечном источнике излучения; в анизотропных средах форма волны описывается, вообще говоря, поверхностью четвертого порядка. В теории Френеля все сложнейшие явления поляризации интерпретируются в удивительном согласии с экспериментальными данными и предстают как частные случаи общего закона сложения и разложения скоростей. 

  1. ЭЛЕКТРОМАГНИТНАЯ  ПРИРОДА СВЕТА.

  РАБОТЫ  ФАРАДЕЯ И МАКСВЕЛЛА. 

  То, что все физические явления представляют собой лишь различные проявления одной и той же сущности, или  идея «единства физических сил», было основной философской предпосылкой физики прошлого века. Систематическое  применение этого принципа мы постоянно находим в работах одного из самых проницательных исследователей всех времен – Майкла Фарадея (1791-1867). Какова связь между электричеством и магнетизмом? Можно ли превратить одно в другое?

  Другие  физики тоже ставили перед собой эту проблему, которая соответствовала общей  тенденции науки того времени, тяготевшей к унифицирующим теориям. Еще в 1812 г. Доменико Морикили (1773-1836) и в 1826 г. Гюнтер Кристи ошибочно считали, что им удалось добиться намагничивания под воздействием света. Но Фарадея убедили не опыты Морикини, который продемонстрировал их специально в 1814 г. в Риме, когда Фарадей, сопровождая Дэви, путешествовал по Италии. Большое влияние на него оказали идеи Джона Гершеля, который в отклонении магнитной стрелки под действием тока видел спиралевидную симметрию, аналогичную вращению плоскости поляризации светового луча при его прохождении через некоторые тела. Однако проведенные Фарадеем в 1834 г. и повторенные в 1838 г. опыты с целью обнаружения действия электрического поля на свет не дали желаемого результата. Оставив эти попытки электрооптических исследований, Фарадей в 1845 г. приступил к магнитооптическим опытам. После первых неудач, которые его, однако, не обескуражили, он обнаружил новое явление. Параллелепипед из тяжелого стекла (фингласа) был помещен между полюсами электромагнита и через него пропускался поляризованный луч света параллельно силовым линиями поля. При возбуждении электромагнита плоскость поляризации света поворачивалась.

Информация о работе Борьба концепций в процессе становления и развития науки о природе света