Автор работы: Пользователь скрыл имя, 03 Апреля 2011 в 13:00, статья
В данной статье использованы статистические данные о 300 самых крупных российских КБ. Указанные данные опубликованы в журнале «Профиль», № 4, 2002 по состоянию на 1 декабря 2001 г. Ввиду того, что эти статистические данные приведены в тыс. рублей, соответствующие цифры имеют до 9 разрядов. Поэтому для снижения масштабов программных расчетов все исходные статистические данные были переведены в долларах США по курсу 31,2 руб. за 1 доллар.
В данной статье использованы статистические данные о 300 самых крупных российских КБ. Указанные данные опубликованы в журнале «Профиль», № 4, 2002 по состоянию на 1 декабря 2001 г. Ввиду того, что эти статистические данные приведены в тыс. рублей, соответствующие цифры имеют до 9 разрядов. Поэтому для снижения масштабов программных расчетов все исходные статистические данные были переведены в долларах США по курсу 31,2 руб. за 1 доллар. Следует также отметить, что капиталы 75 из 300 КБ приведены с учетом субординированного кредита. И, наконец, в 300 КБ включено несколько КБ с иностранным капиталом, действующих на территории России.
Результаты обработки описанных статистических данных приведены в таблице.
Таблица
|
В первом столбце таблицы приведены общие суммы соответствующих показателей 300 КБ. Во втором столбце приведены средние арифметические значения соответствующих показателей КБ, которые, в свою очередь, являются показателями среднего банка России (СБР), характеризующего собой РБС в целом. В третьем столбце представлены ошибки оценки средних арифметических значений, т.е. ошибки оценки показателей СБР.
Данная выборка из 300 самых крупных российских КБ является системообразующим ядром РБС, и характеристики этого ядра, в соответствии с положениями выборочной теории, можно распространить на всю РБС. Так, учитывая что все показатели КБ в составе РБС имеют распределение Гаусса (Hauss) и это проверено по критериям согласия, можно утверждать следующее:
В целом, в каждый
момент РБС представляет собой изменяющуюся
во времени генеральную
Разработка математической модели
Разработку математической
модели оценки рейтингов КБ и РБС
целесообразно начать с выбора коэффициентов,
всесторонне характеризующих
Коэффициенты достаточности капитала
— показывает, насколько вложения КБ в работающие активы (Ар) защищены собственным капиталом КБ (К), которым будут погашаться возможные убытки в случае невозврата или возврата в обесцененном виде того или иного работающего актива.
— показывает отношение капитала КБ к суммарным обязательствам (СО), — т. е. масштаб осуществляемых КБ операций.
— показывает, какая часть собственного капитала КБ сформирована за счет прибыли, т. е. за счет деятельности самого КБ (УФ — уставной фонд).
— показывает, насколько КБ учитывает инфляционные процессы и какую долю своих активов размещает в недвижимости, ценностях, оборудовании (ЗК — защищенный капитал).
Коэффициенты ликвидности КБ
— коэффициент мгновенной ликвидности показывает, насколько КБ использует клиентские деньги в качестве собственных кредитных ресурсов (ЛА — ликвидные активы, ОВ — обязательства до востребования).
— показывает, какую часть суммарных обязательств КБ может вернуть по первому требованию клиентов.
— показывает долю ликвидных активов
в общей сумме активов (А) и
характеризует масштаб
Коэффициенты рентабельности КБ
— характеризует эффективность использования банком привлеченных ресурсов (Пр — прибыль КБ).
— характеризует эффективность операций КБ.
— показывает эффективность использования собственного капитала.
— показывает размер прибыли по отношению к валюте баланса или эффективность использования всех ресурсов.
— показывает эффективность работы КБ, т. е. способность наращивать свой капитал за счет прибыли, а не за счет дополнительных эмиссий акций.
Коэффициент качества активов
— показывает, в какой мере КБ использует имеющиеся у него ресурсы для получения дохода.
Коэффициенты качества пассивов
— характеризует стабильность ресурсной базы, которую обеспечивают долгосрочные обязательства.
— показывает зависимость ресурсной базы КБ от рынка краткосрочных банковских капиталов (Кр — сумма привлеченных кредитов банков).
Используя данные таблицы, рассчитаем выбранные коэффициенты, которые характеризуют средний банк России:
К1 = 0,229; К2 = 0,221; К3 = 0,498; К4 = 0,209; К5 = 0,193;
К6 = 0,137; К7 = 0,111; К8 = 0,029; К9 = 0,030; К10 = 0,131;
К11 = 0,023; К12 = 1,993; К13 = 0,780; К14 = 0,288; К15 = 0,874.
Теперь уравнение для оценки рейтингов КБ и РБС можно записать в виде:
W = Р1 К1 + Р2 К2 + ... + Р15 К15,
где: Р1, Р2, ... ,Р15 — «финансовые веса» коэффициентов.
Для расчета «финансовых весов» коэффициентов рассчитаем опорное значение рейтинга СБР. С этой целью примем «веса» всех коэффициентов равными, т.е. К1 = К2 = ... = К15 = 1. В результате суммирования выше обозначенных значений коэффициентов получим опорное (базовое, исходное, нулевое) значение рейтинга СБР W = 5,746.
Далее используем
метод оценки функций влияния
того или иного коэффициента на выходную
сумму этих коэффициентов и по
степени этого влияния
Определение «финансовых весов» коэффициентов необходимо, ибо простая сумма этих коэффициентов может давать ошибочную оценку рейтинга КБ. Например, высокий рейтинг КБ может быть получен за счет больших значений менее важных показателей КБ, в то время как более важные показатели КБ будут иметь достаточно скромные значения.
Определение «финансовых весов» показателей КБ является достаточно трудной задачей. Качественных решений этой задачи много (см. выше), что негативно, так как это означает, что существует много мнений о «финансовых весах» тех или иных показателей КБ и нет единого мнения об этих «весах» тем более в математической форме.
Определение «финансовых весов» показателей КБ и с их помощью «весов» коэффициентов выходит за рамки определения «весов» в математике. Определение «математических весов», например, слагаемых в сумме, не представляет труда и несколько таких методов предложено в работах автора [1 — 5]. Так, при работе с детерминированными процессами «математические веса» зависят от точности измерения наблюдений. При работе со случайными процессами «математические веса» также зависят от точности оценки наблюдений, т. е. от их дисперсии.
Таким образом,
«математические веса»
Для получения оценок функций влияния необходимо давать одному показателю уравнения (модели) определенное отклонение, фиксировать все остальные показатели и измерять выходной результат модели, т. е. отклонение результата модели от его опорного значения, которое определено выше и составляет W = 5,746.
Выбор отклонений показателей СБР от их средних значений осуществлялся с учетом ограничений, чтобы не создавать нереальные ситуации типа ОВ > СО и т.д. Расчет «финансовых весов» показателей СБР проводился дважды. На первом этапе отклонения показателей СБР от их средних значений брались в диапазоне плюс-минус 20 %. На втором этапе в качестве отклонений показателей СБР от их средних значений бралась плюс-минус одна ошибка оценки среднего арифметического соответствующего показателя СБР (см. таблицу). Результаты оценки «финансовых весов» показателей СБР по вышеуказанным двум этапам полностью совпали, что свидетельствует о корректности этих оценок.
Таким образом, были определены «финансовые веса» десяти показателей СБР: К, Ар, ЛА, ОВ, СО, ЗК, УФ, А, Пр, Кр. Используя эти «веса», можно легко находить «финансовые веса» коэффициентов модели и, соответственно, рейтинги КБ и РБС.
Технику определения «финансовых весов» показателей КБ покажем на примере капитала СБР. Варьируя значением капитала СБР $46,362 млн. (см. таблицу) в пределах плюс-минус 20%, получаем:
Аналогично рассчитаны и «финансовые веса» других показателей:
Р(Ар) = 0,00252 1/млн.; Р(СО) = 0,00223 1/млн.;
Р(УФ) = —0,11069 1/млн.; Р(ЗК) = 0,02166 1/млн.;
Р(ЛА) = 0,01537 1/млн.; Р(ОВ) = —0,00612 1/млн..;
Р(А) = —0,00370 1/млн.: Р(Пр) = 0,03532 1/млн..;
Р(Кр) = —0,00475 1/млн.
Полученные оценки «финансовых весов» показателей СБР свидетельствуют об их большом разбросе и о необходимости их масштабирования. Как видно из изложенных результатов, наибольшие «финансовые веса» имеют такие показатели как УФ, К, Пр, ЗК и ЛА.