Автор работы: Пользователь скрыл имя, 10 Ноября 2010 в 21:17, Не определен
представлены 2 и 3 главы работы
Методология хранилища такова, что информация хранится в процессах, каждый процесс имеет определенный набор измерений и фактов. Т.е. процесс реализован по стандартной схеме "Звезда", в центре которой хранятся факты, а измерения являются лучами. В данном случае процесс отображает выдачу кредита заемщику. Наиболее ценной информацией процесса является статус кредита. Хороший кредит – тот, который заемщик вернул в срок и в полном объеме, плохой – обратная ситуация.
Рисунок 3.3 - Дерево решений – модель определения кредитоспособности физических лиц
Анализируя полученное дерево решений (см. рисунок 3.3) можно сделать вывод, что при помощи дерева решений можно проводить анализ значащих факторов. Такое возможно благодаря тому, что при определении параметра на каждом уровне иерархии, по которому происходит разделение на дочерние узлы, используется критерий наибольшего устранения неопределенности. Таким образом, более значимые факторы, по которым проводится классификация, находятся на более близком расстоянии (глубине) от корня дерева, чем менее значимые. Например, фактор "Обеспеченность займа" более значим, чем фактор "Срок проживания в данной местности". Фактор "Основное направление расходов" значим только в сочетании с другими факторами. Еще одним интересным примером значимости различных факторов служит отсутствие в построенном дереве параметра "Наличие автотранспорта", что говорит о том, что на сегодняшний день это наличие не является определяющим при оценке кредитоспособности физического лица12.
Можно заметить, что такие показатели как "Размер ссуды", "Срок ссуды", "Среднемесячный доход" и "Среднемесячный расход" вообще отсутствуют в полученном дереве. Данный факт можно объяснить тем, что в исходных данных присутствует такой показатель как "Обеспеченность займа", и т.к. этот фактор является точным обобщением четыре вышеописанных показателей, алгоритм построения дерева решений выбрал именно его.
Очень важной особенностью построенной модели является то, что правила, по которым определяется принадлежность заемщика к той или иной группе записаны на естественном языке. Например, на основе построенной модели получаются следующие правила:
Правильно построенное на данных прошлых периодов дерево решения обладает одной еще очень важной особенностью. Эта особенность называется способность к обобщению. Т.е. если возникает новая ситуация (обратился потенциальный заемщик), то, скорее всего, такие ситуации уже были и достаточно много. Вследствие чего можно с большой долей уверенности сказать, что вновь обратившийся заемщик поведет себя так же, как и те заемщики, характеристики которых очень похожи на характеристики вновь обратившегося. На основе построенной модели можно определять принадлежность потенциального заемщика к одному из классов. Для этого необходимо воспользоваться диалоговым окном "Эксперимент" программы Tree Analyzer (рисунок 3.4), в котором, последовательно отвечая на вопросы, можно получить ответ на вопрос: "Давать ли кредит".
Пример получения результата. Вопросы: Обеспеченность займа: Да > Наличие недвижимости: Да > Пол: Муж > Наличие банковского счета: Нет > Основное направление расходов: Покупка товаров длительного пользования.
Ответ: Кредит давать: Да (достоверно на 96 %).
Рисунок 3.4 - Окно "Эксперимент"
Используя
такой подход можно устранить
сразу оба вышеописанных
Основные преимущества системы:
Приведенный выше пример – это приближенный вариант того, как можно использовать методы интеллектуального анализа данных, в частности, деревья решений, для достижения поставленной задачи: уменьшения риска при операциях кредитования физических лиц. Хотя и при таком первом приближении наблюдаются положительные результаты. Дальнейшие усовершенствования могут затрагивать такие моменты как: более точный подбор определяющих заемщика факторов; изменение самой постановки задачи, так, например, вместо двух значений целевого параметра, можно использовать более детальную информацию (Вернул/ Не вернул/ Не вовремя), или использовать в качестве целевого значения вероятность того, что деньги выплачены вовремя.
Таким образом, для эффективного формирования кредитного портфеля банкам необходимо взять на вооружение передовые технологии добычи знаний и применить их для оценки потенциальных заемщиков. Благодаря этому можно будет не бояться предстоящей конкуренции на этом рынке. Подготовка решения данного вопроса сейчас позволит обкатать саму процедуру и в дальнейшем избежать ошибок и расходов в связи с массовым применением таких подходов в дальнейшем.
Далее рассчитаем экономический эффект от предложенных методов
3.3 Экономический эффект от использования
предложенных методов
Применение
на практике вышеуказанных инструментов
позволит Банку повысить качество кредитного
портфеля и тем самым повысить
эффективность кредитной
Прогнозируемый эффект от предложенных мероприятий представлен в таблице 3.1.
Таблица 3.1 – Прогнозируемые показатели деятельности ВТБ 24(ЗАО) .
Показатели | Среднегодовой остаток задолженности | |
2009 год | Прогнозируемый период | |
1) Активы, приносящие прямой процентный доход | 70846 673 | 77931341 |
2) Кредитный портфель | 564821327 | 734267717 |
В том числе: | ||
Кредиты юридическим лицам | 225928530 | 316296162 |
Кредиты, выданные физическим лицам - индивидуальным предпринимателям | 36440086 | 47372112 |
Кредиты предоставленные физическим лицам | 282410663 | 367133862 |
3) Просроченная задолженность | 20042048 | 15416960 |
4) Доля просроченной задолженности | 3,64% | 2,80% |
Из вышеприведенной таблицы видно, что уровень просроченной задолженности снизится на 0,84%, в абсолютном выражении на 4625088 руб.
Таким образом, на основании прогнозируемых данных приведенных выше можно сделать вывод о том, что применение эконометрических методов в банковской практике позволяет банку повысить эффективность своей деятельности в части кредитования и управления рисками, а как следствие увеличить прибыль банка. Также стоит отметить, что внедрение в практику программы интеллектуального анализа Tree Analyzer из пакета Deductor ver.3 потребует от банка инвестиций в размере 2,4 млн. руб. Смета затрат представлена в таблице 3.2.
Таблица 3.2–Смета затрат ВТБ 24(ЗАО) по предложенной программе
Наименование | Стоимость, тыс.руб. |
Программа Tree Analyzer | 1500 |
Программа Bank-stress | 600 |
Наладка программного обеспечения | 300 |
Рассчитаем
период окупаемости данного
Ставка дисконтирования равна 20,25% ( Ставка рефинансирования в 2010 г. составляет 7,75%, уровень инфляции 7,5% и предположим что премия за риск 5%). Первоначальный уровень инвестиций составит 2,4 млн. руб. В течении 4 лет планируется получать доход в размере 1,1 млн.руб.
Для начала рассчитаем чистый дисконтированный доход NPV .
NPV = -2,4 + + + + =
= -2,4 + 0,9 + 0,8 + 0,6 + 0,5 = 0,4 тыс. руб.
NPV больше 0, следовательно проект выгоден.
Рассчитаем дисконтируемый срок окупаемости DPP, в тыс.руб.
0 | -2,4 |
1 | -1,5 |
2 | -0,7 |
3 | -0,1 |
4 | 0,4 |
Из расчета видно, что проект окупится примерно к концу 3 года.
Выводы к 3 главе
В третьей главе предложены пути совершенствования кредитной политики с помощью использование технологий интеллектуального анализа данных.
На основании прогнозируемых данных приведенных выше можно сделать вывод о том, что применение эконометрических методов в банковской практике позволяет банку повысить эффективность своей деятельности в части кредитования и управления рисками, а как следствие увеличить прибыль банка.
Также стоит отметить, что внедрение в практику программы интеллектуального анализа Tree Analyzer из пакета Deductor ver.3 потребует от банка инвестиций в размере 2,4 млн. руб.
Так же осуществлен прогноз основных показателей деятельности ВТБ 24(ЗАО) после внедрения предложенных методов. Который показал, что уровень просроченной задолженности, при выбранной программе снизился на 0,84%, в абсолютном выражении на 4625088 руб.
ЗАКЛЮЧЕНИЕ
В ходе рассмотрения данной темы достигнуты поставленные задачи, необходимые для решения заданной цели работы.
В первой главе раскрыта сущность кредитной политики. Сущность кредитной политики определяется как стратегия и тактика банка по привлечению ресурсов на возвратной основе и их инвестированию в части кредитования клиентов банка. Предметной стороной реализации кредитной политики являются функциональные формы и виды кредитной политики банка. Выявлены факторы, определяющие формирование кредитной политики коммерческого банка. При формировании кредитной политики банк должен учитывать ряд объективных и субъективных факторов: макроэкономические, отраслевые и региональные и внутрибанковские. Раскрыто понятие кредитного риска.
Во второй главе изложены особенности кредитной политики ВТБ 24 (ЗАО). ВТБ 24 (ЗАО) предоставляет кредиты заемщикам на цели, предусмотренные их уставом для осуществления текущей и инвестиционной деятельности. Предоставление банком кредитов основывается на учете необходимых потребностей заемщиков в заемных средствах, наличии достаточных гарантий для своевременного их возврата. Был проведен анализ качества кредитного портфеля ВТБ 24 (ЗАО). Кредитный портфель представляет собой состав и структуру выданных кредитов по отраслям, видам обеспечения и срокам. При анализе кредитного портфеля банка можно отметить, что в конце 2009 года удельный вес просроченных ссуд составлял 3,64 %, т. е в целом за 2 года удельный вес просроченных ссуд увеличился на 1,81 %. Наибольшее увеличение доли просроченных ссуд за период наблюдается в 2008 году – 3,64 %.
Информация о работе Анализ кредитной политики банка ЗАО "ВТБ 24"