Автор работы: Пользователь скрыл имя, 14 Декабря 2012 в 18:05, реферат
Развитие отечественной спутниковой радионавигационной системы (СРНС) ГЛОНАСС имеет уже практически сорокалетнюю историю, начало которой положено, как чаще всего считают, запуском 4 октября 1957 г. в Советском Союзе первого в истории человечества искусственного спутника Земли (ИСЗ). Измерения доплеровского сдвига частоты передатчика этого ИСЗ на пункте наблюдения с известными координатами позволили определить параметры движения этого спутника.
Обратная задача была очевидной: по измерениям того же доплеровского сдвига при известных координатах ИСЗ найти координаты пункта наблюдения.
Исторические сведения…………………………………….………..3
Структура спутниковых радионавигационных систем…………6
Подсистема космических аппаратов………………………………7
Наземный командно-измерительный комплекс………………….8
Навигационная аппаратура потребителей СРНС………..………9
Взаимодействие подсистем СРНС в процессе определения
текущих координат спутников…………………………………..………9
Основные навигационные характеристики НС…………….……10
Решение навигационной задачи……………………………………..13
СРНС ГЛОНАСС………………………………………………………14
Структура и основные характеристики……………………………14
Назначение и состав подсистемы контроля и управления……..16
Центр управления системой……………………………………..16
Контрольные станции…………………………………………….17
Эфемеридное обеспечение………………………………………..18
Особенности формирования эфемеридной
информации в ГЛОНАСС……………………………………………….18
ЛИТЕРАТУРА……………………………………………………………..19
де с — скорость света; l — длина волны излучаемого НС сигнала.
Геометрическое место точек пространства с одинаковым значением навигационного параметра называют поверхностью положения. Пересечение двух поверхностей положения определяет линию положения — геометрическое место точек пространства, имеющих два определенных значения двух навигационных параметров. Местоположение определяется координатами точки пересечения трех поверхностей положения или двух линий положения. В ряде случаев (из-за нелинейности) две линии положения могут пересекаться в двух точках. При этом однозначно найти местоположение можно, только используя дополнительную поверхность положения или иную информацию о местоположении объекта.
Для решения навигационной задачи, т. с. для нахождения вектора потребителя П, используют функциональную связь между навигационными параметрами и компонентами вектора потребителя. Соответствующие функциональные зависимости принято называть навигационными функциями. Конкретный вид навигационных функций обусловлен многими факторами: видом НП, характером движения НС и потребителя, выбранной системой координат и т.д.
Навигационные
функции для пространственных координат
потребителя можно определить с
помощью различных
5. СРНС ГЛОНАСС
5.1. Структура и основные
Отечественная сетевая
Навигационные определения в ГЛОНАСС осуществляются на основе опросных измерений в аппаратуре потребителей псевдодальности и радиальной псевдоскорости до четырех спутников (или трех спутников при использовании дополнительной информации) ГЛОНАСС, а также с учетом принятыx навигационных сообщений этих спутников. В навигационных сообщениях, передаваемых с помощью спутниковых радиосигналов, содержится информация о различных параметрах, в том числе и необходимые сведения о положении и движении спутников в соответствующие моменты времени. В результате обработки этих данных в АП ГЛОНАСС обычно определяются три (две) координаты потребителя, величина и направление вектора его земной (путевой) скорости, текущее время (местное или в шкале Госэталона Координированного Всемирного Времени UTC(SU) или, по другому, UТC(ГЭВЧ) (ГЭВЧ — Государственный эталон времени и частоты). Основные характеристики СРНС ГЛОНАСС приведены в табл. 1 — 2, где для сравнения приведены сведения об американской срсдневысотной СРНС GPS. В табл. 1 приведены общесистемные характеристики СРНС ГЛОНАСС. В табл. 2 приведены как стандартные значения характеристик СРНС, так и их оценки на основе данных, полученных в 1993—1995 гг. Последние показаны в скобках, причем для С/А-кода, кода стандартной точности) значения приводятся для вариантов работы с А/без SA (SA — Selective Availability — селективный доступ) ).
Таблица 1. Системные характеристики СРНС ГЛОНАСС
Параметр, способ |
ГЛОНАСС |
GPS |
Число НС (резерв) |
24 (3) |
24 (3) |
Число орбитальных плоскостей |
3 |
6 |
Число НС в орбитальной плоскости |
8 |
4 |
Тип орбит |
Круговая (е =0±0,01) |
Круговая |
Высота орбит, км |
19100 |
20145 |
Наклонение орбит, 1рад |
64,8±0,3 |
55 (63) |
Драконический период обращения НС |
11ч 15 мин 44 с ±5 с |
11 ч 56,9 мин |
Способ разделения сигналов НС |
Частотный |
Кодовый |
Несущие частоты навигационных |
|
|
L1 |
1602,5625...1615,5 |
1575.42 |
L2 |
1246,4375...1256,5 |
1227,6 ! |
Период повторения ПСП |
1 мс |
1 мс (С/А-код) |
(дальномерного кода или его сегмента) |
|
7 дн (Р-код) |
Тактовая частота ПСП, МГц |
0,511 |
1,023 (С/А-код) |
|
|
10,23 (P,Y-код) |
Скорость передачи цифровой информации |
|
|
(соответственно СИ- и D- код), бит/с |
50 |
50 |
Длительность суперкадра, мин |
2,5 |
12,5 |
Число кадров в суперкадре |
5 |
25 ; |
Число строк в кадре |
15 |
5 |
Система отсчетов времени |
UTC(SU) |
UTC(USNO) . |
Система отсчета пространственных |
|
|
координат |
ПЗ-90 |
WGC-84 |
Тип эфемерид |
Геоцентрические |
Модифициро- |
|
координаты и их |
ванные кепле- |
|
производные |
ровы элементы |
Таблица 2. Точностные характеристики СРНС |
||||||
Параметр |
Точность измерений |
|||||
GPS (P=0,95) |
ГЛОНАСС (P=0,997) | |||||
Горизонтальная плоскость, м |
100 (72/18) 300 (Р=0.9999) 18 |
(С/А-код) (С/А-код) (Р-, Y-код! |
60 (СТ-код) (39) | |||
Вертикальная плоскость, м |
156 28 |
(135/34) |
(С/А-кол) (Р-, Y-код) |
75 (СТ-код) (67,5) | ||
Скорость, см/с |
< 200 20 |
|
(С/А-код ) (Р-. Y-код) |
15 (С'1-код) | ||
Ускорение, мм/с2 |
8 <19 |
|
(С/А-код) (С/А-код ) |
— | ||
Время, мкс |
0,34 0,18 код) |
|
(С/А-код ) (Р-, Y- |
1 (CI-код) |
5.2. Назначение и состав
Наземный сегмент системы ГЛОНАСС — подсистема контроля и упрощения (ПКУ), предназначена для контроля правильности функционирования правления и информационного обеспечения сети спутников системы ГЛОНАСС, состоит из следующих взаимосвязанных стационарных элементов: центр управления системой ГЛОНАСС (ЦУС); центральный синхронизатор (ЦС); контрольные станции (КС); система контроля фаз (СКФ); кванто-оптические станции (КОС); аппаратура контроля поля (АКП).
Наземный сегмент выполняет следующие функции:
планирование работы всех технических средств ПКУ, автоматизированная обработка и передача данных между элементами ПКУ.
В автоматизированном режиме решаются практически все основные задачи управления НС и контроля навигационного поля.
5.2.1 Центр управления системой
Центр управления системой
Информацию,
необходимую для запуска
Центральный
синхронизатор, взаимодействуя с ЦУС,
формирует шкалу времени
5.2.2. Контрольные станции
Контрольные станции (станции управления, измерения и кон ля или наземные измерительные пункты) по принятой схеме радиоконтроля орбит осуществляют сеансы траёкторных и временных измерений, необходимых для определения и прогнозирования пространственного положения спутников и расхождения их шкал времени с временной шкалой ГЛОНАСС, а также собирают телеметрическую информацию о состоянии бортовых систем спутников. С их помощью происходит закладка в бортовые ЭВМ спутников массивов служебной информации (альманах, эфемериды, частотно-временные поправки и др.), временных программ и оперативных команд для управления новыми системами.
Траекторные
измерения осуществляются с помощью
радиолокационных станций, которые
определяют запросным способом дальность
до спутников и начальную
Для эфемеридного обеспечения с КС в ЦУС ежесуточно выдается по каждому спутнику по 10 ... 12 наборов (сеансов) измеренных текущих навигационных параметров объемом примерно 1 Кбайт каждый.
В настоящее время для обеспечения работ ГЛОНАСС могут использоваться КС, рассредоточенные по всей территории России. Часть КС других элементов наземного сегмента ГЛОНАСС осталась вне территории России (в странах СНГ) и может быть использована лишь при наличии соответствующих договоренностей. Размещение сети КС выбрано с учетом существующей инфраструктуры управления НС и из условий надежного решения задач траекторных измерений для всей орбитальной группировки.
Такая сеть КС обеспечивает закладку на спутники системы 1 раз/сут высокоточных эфемерид и временных поправок (возможна закладка 2 раз/сут).
В случае выхода из строя одной из станций возможна ее равноценная замена другой, так как сеть КС обладает достаточной избыточностью и в наихудшей ситуации работу системы может обеспечивать ЦУС и одна станция, однако интенсивность ее работы будет очень высокой.
При планировании
работы КС на сутки определяются основные
и резервные станции для
Описанная сеть КС отличается от аналогичной структуры СРНС GPS тем, что обеспечивает высокое качество управления орбитальной группировкой только с национальной территории. КС ГЛОНАСС могут использоваться для обеспечения функционирования других космических средств.
5.2.3. Эфемеридное обеспечение
Эфемеридное обеспечение поддерживается комплексом технических и программных средств, выполняющих радиоконтроль орбит спутников с нескольких наземных КС, обработку результатов траекторных измерений и рас эфемеридной информации (ЭИ), передаваемой далее с помощью загрузочных станций на спутник.
Высокая точность расчета эфемерид обеспечивается соответствующей точностью измерительных средств, внесением поправок на выявленные методических траекторных измерений, но и накапливаемых за недельный срок. При этом дальномерные данные, получаемые от станций слежения за спутниками, периодически калибруются, что обеспечивает высокое качество траекторных измерений в системе ГЛОНАСС.
Предполагается, что такие
традиционные методы
5.2.4. Особенности формирования
Система
ГЛОНАСС создавалась в
Исследования показали, что необходимо отказаться от типовых остро-резонансных (например, с периодом обращения спутника равным 12 ч, как в СРНС GPS, когда период вращения Земли вокруг своей оси равен двум периодам обращения спутника) орбит спутников, так как в процессе моделирования уравнений траекторного движения спутников это повышает устойчивость их решений и ослабляет корреляции между параметрами отдельных уравнений (моделирующих, например, изменение геопотенциала, координат измерительных средств, радиационного давления). Кроме того, оказалось, что наивысшая точность баллистико-эфемеридного обеспечения системы при решении многомерной навигационной задачи с расширенным вектором состояния обеспечивается при обработке измеренных текущих навигационных параметров на интервале 8 сут. Переход от острорезонансных орбит был осуществлен путем „увеличения числа витков спутника (по сравнению с GPS) на интервале 8 сут до 16 ... 17. Число спутников в системе выбрано равным 24 с равномерным распределением по трем орбитальным плоскостям. Все спутники системы фазируются таким образом, что на больших временных интервалах они имеют один след на поверхности Земли. Это обеспечивает высокую баллистическую устойчивость системы и относительно высокую точность и простоту расчетов траекторий. Опыт эксплуатации системы показал, что при обеспечении начального периода обращения спутника с точностью не хуже 0,1 с на протяжении заданного срока активного существования спутника его положение в системе корректировать не нужно.