Автор работы: Пользователь скрыл имя, 06 Апреля 2011 в 11:23, курсовая работа
На сегодняшний день в мире телекоммуникаций идет ускоренный процесс цифровизации сетей. Цифровые системы передачи, по сравнению с аналоговыми, имеют ряд преимуществ, главное из которых это более высокая помехозащищенность. В России этот процесс имеет несколько отличительных черт, поскольку у нас в стране накопилось большое число аналоговых систем передачи.
Сертификат № ОС/1-СП-564 до 01.01.03
Для организации связи используем современную систему передачи, предназначенную для работы с ВОЛС: SDH-мультиплексор FlexGain A155
Краткая характеристика.[3.]
SDH-мультиплексор FlexGain A155 предназначается для передачи данных по ВОЛС со скоростью 155/622 Мбит/с (уровень STM-1/4).
Особенности оборудования FlexGain A155:
• возможность передачи как TDM-сигналов, так и потоков данных от локальных сетей LAN (сети Интернет);
• наиболее интегрированное из всех типов SDH-оборудования, существующих на сегодняшний день;
• высокая гибкость конфигураций;
• наличие системы сетевого управления FlexGain VIEW на основе
SNMP -протокола. Возможность удаленного администрирования с рабочей станции, подключенной к сети.
Рис 2.2.2.1 Внешний вид мультиплексора FlexGain A155
Мультиплексор включает в себя оптические и/или электрические интерфейсы
Архитектура
Мультиплексор FlexGain A155 выполнен в виде 19” модульного блока, оснащенного материнской платой, на которой расположены источник питания, модуль управления (SNMP-агент), матрица
кросс-коммутации, блок синхронизации и 21 порт G.703 со скоростью 2,048 Мбит/с.
В конструкции 19” модульного блока реализованы 4 посадочных места для установки плат следующих интерфейсов:
• интерфейсы со скоростью 2, 34 и 45 Мбит/с (рекомендация ITU-T G.703 иG.823);
• оптические
или электрические
STM-4 (рекомендация ITU-T G.703 или G.957);
• Ethernet Brige 10/100BaseT.
Рис.
5,1Функциональная блок-схема
мультиплексора FlexGain A155
Электропитание
Мультиплексор имеет два входа для подачи электропитания - основной и
резервный. Оба входа рассчитаны на подключение к источникам питания
постоянного тока с напряжением –48 В или –60 В.
Входы защищены диодами и фильтрами от импульсных помех.
Управление
Встроенные в материнскую плату HTTP-сервер и SNMP-агент обеспечивают полный набор функций диагностики и конфигурирования SDH-мультиплексора. Удаленный доступ по управлению мультиплексорами FlexGain A155, связанными в сеть SDH, обеспечивается через служебные каналы DCC. Централизованная система управления FlexGain View устанавливается на PC с ОС Windows 2000/NT и подключается к мультиплексору FlexGain A155 через интерфейс Ethernet 10BaseT.
Для установки параметров Ethernet интерфейса управления используется терминал VT100, который в свою очередь подключается к мультиплексору FlexGain A155 через интерфейс RS232.
Матрица кросс-коммутации
Матрица кросс-коммутации обеспечивает обработку агрегатного сигнала STM-1 на уровне управляемых транспортных модулей VC-12, VC-3 и сигнала STM-4 на уровне VC-4 (до 5 VC-4).
Функции защиты трафика
В мультиплексоре FlexGain A155 реализованы следующие функции защиты трафика:
• резервирование потока STM-1/4 по дополнительной оптической линии (MSP);
• резервирование направления VC-12, VC-3 и VC-4 (SNC-P).
Защита MSP
Защита трафика обеспечивается посредством дублирования потока STM-1/4 по дополнительной волоконно-оптической линии через резервный модуль приемопередатчика STM-1/4 (1+1):
• параллельная передача потоков STM-1/4 (основного и резервного) по двум независимым волоконно-оптическим линиям;
• автоматический выбор на приемном конце основного или резервного потоков STM-1/4. Переключение трафика данных на резервную линию STM-1/4 выполняется без перерыва сеанса связи и соответствует рекомендации ITU-T G.823.
Переключение на резервную линию STM-1/4 инициируется в случае:
• обрыва линии основного потока STM-1/4;
• неисправности в интерфейсном модуле STM-1/4 мультиплексора;
• команды оператора.
Переключение на резервную линию (MSP) инициируется после обнаружения следующих неисправностей в основном потоке STM-1/4:
• SF (потеря сигнала):
− потеря принимаемого потока STM-1/4 (LOS STM-1/4);
− потеря фреймов в потоке STM-1/4 (LOF STM-1/4);
− STM-1/4 обнаружение сигнала аварийного сообщения (AIS) в мультиплексной секции (MS-AIS);
− превышение коэффициента ошибок в байте B2 (EBER-B2);
− отсутствие интерфейсного модуля STM1/4 (ADRIC).
• SD - ухудшение качества сигнала (частота появления ошибок в байте B2 превышает допустимый порог).
Сигналы SF и SD обрабатываются с заданной частотой опроса, и их усредненное значение (за период времени задаваемый оператором) активизирует протокол K1/K2, по которому запускается защитный механизм, описанный в рекомендации ITU-T G.783.
Cинхронизация
Мультиплексор FlexGain A155 имеет:
• встроенный источник синхронизации потоков STM-1/4;
• вход/выход для подключения внешнего источника синхронизации (2048 кГц).
Режимы синхронизации
Мультиплексор FlexGain A155 может получать сигнал синхронизации от следующих альтернативных источников:
• от агрегатных потоков STM-1/4 «Восточного» или «Западного» направлений;
• от основного или резервного потоков STM-1/4
(в случае резервирования MSP);
• от компонентного потока 2 Мбит/с;
• синхронизирующий сигнал частотой 2048 кГц (ITU-T G.703) от внешнего генератора;
• от внутреннего генератора.
Автоматический выбор источника синхронизации
В случае отказа основного (активного) источника синхронизации происходит автоматическое переключение на один из резервных источников синхронизации в соответствие с выставленным приоритетом. Приоритеты переключения синхронизации имеют реверсивный режим.
Ручной выбор источника синхронизации
В мультиплексоре FlexGain A155 предусмотрена возможность ручного переключения на требуемый источник синхронизации.
Интерфейcы STM-1 и STM-4
Модуль интерфейса STM-1/4 обеспечивает мультиплексирование агрегатного потока, обработку VC-4, организацию служебного канала EOW и сопряжение с оптической или электрической линией связи.
В состав мультиплексора входят следующие модули интерфейсов:
• IC1.1 оптический приемопередатчик 1310 нм, обеспечивающий дальность передачи до 70 км;
• IC1.2 оптический приемопередатчик 1550 нм, обеспечивающий дальность передачи до 100 км;
• IC1.2+ оптический приемопередатчик 1550 нм, обеспечивающий дальность передачи до 120 км;
• S1.1 оптический приемопередатчик 1310 нм, обеспечивающий дальность передачи до 20 км;
• L1.1 оптический приемопередатчик 1310 нм, обеспечивающий дальность передачи до 80 км;
• MM1.1 оптический приемопередатчик 1310 нм, обеспечивающий передачу по многомодовому оптоволокну;
• S4.1 оптический приемопередатчик 1310 нм, обеспечивающий дальность передачи до 20 км;
• L4.1 оптический приемопередатчик 1310 нм, обеспечивающий дальность передачи до 80 км;
• L4.2 оптический приемопередатчик 1550 нм, обеспечивающий дальность передачи до 100 км;
• электрический приемопередатчик для коаксиального кабеля, G.703/75 Ом (BNC).
Установка в мультиплексоре двух оптических/электрических приемопередатчиков позволяет организовать терминальный SDH-узел с линейным резервированием MSP, либо транзитный SDH-узел с линейным резервированием SNC-P.
Процессор байтов служебной информации
Байты служебной информации заголовков маршрута (POH) и секции (SOH), добавляемые/выделяемые в потоке STM-1/4, содержат следующие элементы контроля агрегатного потока:
• байты синхронизации фрейма;
• данные контроля четности;
• служебные каналы связи для проведения инженерных работ.
Служебные каналы связи для проведения инженерных работ
Цифровой канал (байты служебной информации E1 или E2) в потоке SDH резервируется для организации цифровой линии служебной связи (EOW) на уровне MSP.
Доступ к каналу служебной связи возможен через интерфейс V.11, расположенный на лицевой панели мультиплексора. Для преобразования цифрового канала в аналоговую форму сигнала (организация канала голосовой связи) необходимо использовать дополнительное устройство EOW300.
Модули оптических интерфейсов
Допустимое затухание, вносимое волоконно-оптической линией между передающей и принимающей сторонами при значении BER, менее
10-10 .
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
Определение длины регенерационного участка
После того, как выбраны типовая система передачи и оптический кабель, на основе заданных качества связи и пропускной способности линии определяют длины регенерационных участков lр.
По мере распространения оптического сигнала по кабелю, с одной стороны, происходит снижение уровни мощности, с другой стороны — увеличение дисперсии (уширение передаваемых импульсов).
Таким образом, длина lру ограничена либо затуханием, либо уширением импульсов в линии[4.].
1. по дисперсии
[5.стр.
83 ф. 6.3]
где,
Fт – тактовая частота, Fт =34,368 Мбит/с;
[5.стр. 83 ф. 6.1]
где
-разница между уровнем
анс - затухание неразъемного соединения 0,03дБ;
арс - затухание на разъемах 0,3 дБ;
lсд - строительная длина, lсд=2000м;
Из
полученных двух значений выбираем меньшее,
а именно lру=40,86км
Оборудование линейного тракта
КОЛТ – комплекты окончаний линейных трактов
Назначение
Организация дуплексных цифровых трактов между оконечными пунктами по симметричным и коаксиальным кабелям.
Номенклатура
оборудования линейного тракта и его
характеристика приведены в таблице
Таблица 5.8 Оборудование линейного тракта
Тип комплекта | Скорость передачи информации, кбит/с | Тип кабеля | Расстояние между станциями, км |
КОЛТ34 | 34 368 | КМ – 4
МКТ – 4 МКС |
6
3 3 |
КОЛТ8 | 8448 | КМ – 4
МКТ – 4 МКС ЗКП |
13
6,5 6 6 |
КОЛТ4 | 4224 | КМ – 4
МКТ – 4 МКС ЗКП |
19
9,5 9 9 |
КОЛТ2 | 2048 | МКС
ЗКП ТПП – 0,5 |
22
22 8,25 |
КОЛТ2/2 | 1024 | МКС
ЗКП ТПП – 0,5 |
31
31 11,5 |