Микроскоп.

Автор работы: Пользователь скрыл имя, 05 Марта 2010 в 11:28, Не определен

Описание работы

История открытия микроскопа. Его виды.

Файлы: 1 файл

МИКРОСКОП.doc

— 200.50 Кб (Скачать файл)

Из  истории микроскопа

В рассказе Василия Шукшина «Микроскоп»  деревенский столяр Андрей Ерин купил  на «заныканую» от жены зарплату мечту  всей своей жизни – микроскоп  – и поставил своей целью найти  способ извести на земле всех микробов, поскольку искренне считал, что, не будь их, человек мог бы жить более ста пятидесяти лет. И только досадное недоразумение помешало ему в этом благородном деле. Для людей многих профессий микроскоп - это необходимое оборудование, без которого выполнение многих исследований и технологических операций просто невозможно. Ну а в «домашних» условиях этот оптический прибор позволяет всем желающим расширить границы своих возможностей, заглянув в «микрокосмос» и исследовав его обитателей.

Первый микроскоп  был сконструирован отнюдь не профессиональным ученым, а «любителем», торговцем мануфактурой Антони Ван Левенгуком, жившим в Голландии в XVII веке. Именно этот пытливый самоучка первым взглянул через сделанный им самим прибор на капельку воды и увидел тысячи мельчайших существ, названных им латинским словом animalculus («маленькие звери»). За свою жизнь Левенгук успел описать более двухсот видов «зверушек», а изучая тонкие срезы мяса, фруктов и овощей, он открыл клеточную структуру живой ткани. За заслуги перед наукой Левенгук в 1680 году был избран действительным членом Королевского общества, а чуть позже стал академиком и Французской Академии наук.

Микроскопы Левенгука, которых за свою жизнь он собственноручно  изготовил более трех сотен, представляли собой небольшую, величиной с  горошину, сферическую линзу, вставленную в оправу. Микроскопы имели предметный столик, положение которого относительно линзы можно было настраивать с помощью винта, а вот подставки или штатива у этих оптических приборов не было – их нужно было держать в руках. С точки зрения сегодняшней оптики, прибор, который называется «микроскопом Левенгука», является не микроскопом, а очень сильной лупой, поскольку его оптическая часть состоит только из одной линзы.

С течением времени  устройство микроскопа заметно эволюционировало, появились микроскопы нового типа, были усовершенствованы методы исследования. Однако работа с любительским микроскопом и по сей день сулит немало интересных открытий и взрослым, и детям.

Устройство  микроскопа

Микроскоп –  это оптический прибор, предназначенный для исследования увеличенных изображений микрообъектов, которые невидны невооруженным глазом.

Основными частями  светового микроскопа (рис. 1) являются объектив и окуляр, заключенные в  цилиндрический корпус – тубус. Большинство  моделей, предназначенных для биологических исследований, имеют в комплекте три объектива с разными фокусными расстояниями и поворотный механизм, предназначенный для их быстрой смены – турель, часто называемую револьверной головкой. Тубус располагается на верхней части массивного штатива, включающего тубусодержатель. Чуть ниже объектива (или турели с несколькими объективами) находится предметный столик, на который устанавливаются предметные стекла с исследуемыми образцами. Резкость регулируется с помощью винта грубой и точной настройки, который позволяет изменять положение предметного столика относительно объектива.

Рис. 1
1. Окуляр 
2. Тубус 
3. Держатель 
4. Винт грубой фокусировки 
5. Винт точной (микрометренной)  
    фокусировки 
6. Револьверная головка 
7. Объектив 
8. Предметный столик

Для того чтобы исследуемый  образец имел достаточную для  комфортного наблюдения яркость, микроскопы снабжаются еще двумя оптическими  блоками (рис. 2) – осветителем и конденсором. Осветитель создает поток света, освещающий исследуемый препарат. В классических световых микроскопах конструкция осветителя (встроенного или внешнего) предполагает низковольтную лампу с толстой нитью накала, собирающую линзу и диафрагму, изменяющую диаметр светового пятна на образце. Конденсор, представляющий собой собирающую линзу, предназначен для фокусировки лучей осветителя на образце. Конденсор также имеет ирисовую диафрагму (полевую и апертурную), с помощью которой регулируется интенсивность освещения.

При работе с пропускающими  свет объектами (жидкостями, тонкими  срезами растений и т. п.), их освещают проходящим светом – осветитель и  конденсор располагаются под  предметным столиком. Непрозрачные же образцы нужно освещать спереди. Для этого осветитель располагают над предметным столиком, и его лучи с помощью полупрозрачного зеркала направляются на объект через объектив.

Осветитель может  быть пассивным, активным (лампа) или  состоять из обоих элементов. Самые  простые микроскопы не имеют ламп для подсветки образцов. Под столиком у них располагается двустороннее зеркало, у которого одна сторона плоская, а другая – вогнутая. При дневном освещении, если микроскоп стоит у окна, получить довольно неплохое освещение можно при помощи вогнутого зеркала. Если же микроскоп находится в темном помещении, для подсветки используются плоское зеркало и внешний осветитель.

Увеличение микроскопа равно произведению увеличения объектива  и окуляра. При увеличении окуляра  равном 10 и увеличении объектива равном 40 общий коэффициент увеличения равен 400. Обычно в комплект исследовательского микроскопа входят объективы с увеличением от 4 до 100. Типичный комплект объективов микроскопа для любительских и учебных исследований (х 4, х10 и х 40), обеспечивает увеличение от 40 до 400.

Разрешающая способность  – другая важнейшая характеристика микроскопа, определяющая его качество и четкость формируемого им изображения. Чем больше разрешающая способность, тем больше мелких деталей можно  рассмотреть при сильном увеличении. В связи с разрешающей способностью говорят о «полезном» и «бесполезном» увеличении. «Полезным» называется предельное увеличение, при котором обеспечивается максимальная деталировка изображения. Дальнейшее увеличение («бесполезное») не поддерживается разрешающей способностью микроскопа и не выявляет новых деталей, зато может негативно повлиять на четкость и контраст изображения. Таким образом, предел полезного увеличения светового микроскопа ограничивается не общим коэффициентом увеличения объектива и окуляра - его при желании можно сделать сколь угодно большим, - а качеством оптических компонентов микроскопа, то есть, разрешающей способностью.

Рис. 2
1. Осветитель 
2. Ирисовая полевая диафрагма 
3. Зеркало 
4. Ирисовая апертурная диафрагма 
5. Конденсор 
6. Препарат 
6'. Увеличенное действительное промежуточное 
     изображение препарата, образуемое объективом 
6''. Увеличенное мнимое окончательное  
      изображение препарата, наблюдаемое в окуляре 
7. Объектив 
8. Окуляр

Микроскоп включает в себя три основные функциональные части:  
 
1. Осветительная часть  
Предназначена для создания светового потока, который позволяет осветить объект таким образом, чтобы последующие части микроскопа предельно точно выполняли свои функции. Осветительная часть микроскопа проходящего света расположена за объектом под объективом в прямых микроскопах и перед объектом над объективом в инвертированных.  
Осветительная часть включает источник света (лампа и электрический блок питания) и оптико-механическую систему (коллектор, конденсор, полевая и апертурная регулируемые/ирисовые диафрагмы).  
 
2. Воспроизводящая часть  
Предназначена для воспроизведения объекта в плоскости изображения с требуемым для исследования качеством изображения и увеличения (т.е. для построения такого изображения, которое как можно точнее и во всех деталях воспроизводило бы объект с соответствующим оптике микроскопа разрешением, увеличением, контрастом и цветопередачей).  
Воспроизводящая часть обеспечивает первую ступень увеличения и расположена после объекта до плоскости изображения микроскопа. Воспроизводящая часть включает объектив и промежуточную оптическую систему.  
Современные микроскопы последнего поколения базируются на оптических системах объективов, скорректированных на бесконечность.  
Это требует дополнительно применения так называемых тубусных систем, которые параллельные пучки света, выходящие из объектива, «собирают» в плоскости изображения микроскопа.  
 
3. Визуализирующая часть  
Предназначена для получения реального изображения объекта на сетчатке глаза, фотопленке или пластинке, на экране телевизионного или компьютерного монитора с дополнительным увеличением (вторая ступень увеличения).  
 
Визуализирующая часть расположена между плоскостью изображения объектива и глазами наблюдателя (камерой, фотокамерой).  
Визуализирующая часть включает монокулярную, бинокулярную или тринокулярную визуальную насадку с наблюдательной системой (окулярами, которые работают как лупа).  
Кроме того, к этой части относятся системы дополнительного увеличения (системы оптовара/смены увеличения); проекционные насадки, в том числе дискуссионные для двух и более наблюдателей; рисовальные аппараты; системы анализа и документирования изображения с соответствующими согласующими элементами (фотоканал).

Основные  методы работы с микроскопом

Метод светлого поля в проходящем свете. Подходит для  изучения прозрачных объектов с неоднородными  включениями (тонкие срезы растительных и животных тканей, простейшие микроорганизмы в жидкостях, тонкие полированные пластинки некоторых минералов). Осветитель и конденсор располагаются ниже предметного столика. Изображение формирует свет, проходящий через прозрачную среду и поглощаемый более плотными включениями. Для повышения контраста изображения часто используются красители, концентрация которых тем больше, чем больше плотность участка образца.

Метод светлого поля в отраженном свете. Используется для  изучения непрозрачных объектов (металлов, руд, минералов), а также объектов, из которых невозможно или нежелательно брать образцы для приготовления полупрозрачных микропрепаратов (ювелирных изделий, произведений искусства и пр.) Освещение поступает сверху, обычно через объектив, который в данном случае играет также роль конденсора.

Метод косого освещения  и метод темного поля. Методы для исследования образцов с очень низким контрастом, например, практически прозрачных живых клеток. Проходящий свет подают на образец не снизу, а немного сбоку, благодаря чему становятся заметны тени, которые образуют плотные включения (метод косого освещения). Сместив конденсор таким образом, что его прямой свет вообще не будет попадать на объектив (образец при этом освещается только косыми лучами на просвет), в окуляре микроскопа можно наблюдать белый объект на черном фоне (метод темного поля). Оба метода подходят только для микроскопов, конструкция которых допускает перемещение конденсора относительно оптической оси микроскопа.

Виды  современных микроскопов

Помимо световых микроскопов, существуют также электронные и атомные, которые в основном используются для научных исследований. Обычный просвечивающий электронный микроскоп похож на световой, за тем исключением, что объект облучается не световым потоком, а пучком электронов, генерируемым специальным электронным прожектором. Полученное изображение проецируется на люминесцентный экран с помощью системы линз. Увеличение просвечивающего электронного микроскопа может достигать миллиона, однако, для атомно-силовых микроскопов и это не предел. Именно атомным микроскопам, способным вести исследования на молекулярном и даже атомном уровне, мы обязаны многим последним достижениям в областях генной инженерии, медицины, физики твердого тела, биологии и других наук.

Световые микроскопы тоже бывают разными и могут классифицироваться по нескольким признакам, например, количеству оптических блоков (монокулярные/бинокулярные или стерео) или типу освещения (поляризационные и люминесцентные, интерференционные и фазо-контрастные). Для любительской практики подойдет простой монокулярный световой микроскоп с максимальным увеличением 400х. Более сложные аппараты отличаются друг от друга конструкцией осветителя и конденсора, являются специальными и используются в узких областях науки. В особый вид выделяются стереомикроскопы, которые необходимы при проведении микрохирургических операций и производстве микроэлектронных компонентов, а также незаменимы в генной инженерии.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Изготовлением оптических приборов И. П. Кулибин занимался еще в Нижнем Новгороде до отъезда в 1769 г. в Петербург. Там он в 1764-1766 гг. самостоятельно сконструировал зеркальный телескоп системы Грегори, микроскоп и электрическую машину по образцам английских инструментов, привезенным в Нижний Новгород купцом Извольским. Сам Кулибин так писал об этой работе: "Потом стал искать разными опытами, как полировать стекла зрительных труб, которым сделал особливую махину и чрез то сыскал оным полировку. По сем изобретении сделал две трубки зрительные длиною по три аршина, да один посредственный, собранный из пяти стекол, микроскоп... По случаю получил я для рассмотрения телескоп с метальными зеркалами аглийския работы, который разобрав, как в стеклах, так и в зеркалах стал искать к солнцу зажигательные точки и снимать отдаленную от тех зеркал и стекол до зажигательных точек.меру, по которым бы можно было познать, каковые и вогнустию и выпуслостию для стекол и зеркал потребно будет сделать медные формы для точения на песке зеркал и стекол оных и со всего того телескопа сделал рисунок... Потом стал делать опыты, как бы против того составить и металл в пропорцию; а когда твердостию и белостию стал у меня выходить на оных сходственен, то из того по образцу налил я зеркал, стал их точить на песке на реченных и уже сделанных выпуклистых формах, и над теми точеными зеркалами начал делать опыты, каким бы мне способом найти, им такую ж чистую полировку, в чем и продолжалось немалое время. Наконец выпробовал одно зеркало в полировке на медной форме, натирая оную со жженым оловом и деревянным маслом. И так с тем опытом из многих сделанных зеркал вышло одно большое зеркало и другое противное малое в пропорцию..." [1, с. 426]. 
Из приведенного выше отрывка автобиографии Кулибина видно, что он своим пытливым умом сумел дойти до определения фокусных расстояний линз и зеркал, раскрыть секрет сплава для изготовления металлического зеркала, придумать и построить станок для шлифовки и полировки линз и зеркал. 
Кулибин изготовил в Нижнем Новгороде один микроскоп и два телескопа, из которых "видна была Балахна весьма близко, хотя и с темнотою, но чисто" [1, с. 379]. Если при этом учесть, что промышленный город Балахна находился в 32 км от Нижнего Новгорода, то увеличение телескопов Кулибина было весьма большим. Один из биографов Кулибина, профессор А. Ершов, в середине XIX в. писал, что "Одних этих изобретений было бы достаточно для увековечения имени славного механика. Мы говорим изобретений, потому, что обтачивать стекла, делать металлические зеркала и чудные механизмы в Нижнем Новгороде без всякого пособия и образца, - это значит изобретать способы для этих построений". 
В 1768 г. Нижний Новгород посетила Екатерина II; ей были "представлены" инструменты Кулибина, произведшие, по всей вероятности, на нее положительное впечатление, так как . в следующем 1769 г. она пожелала увидеть их вторично, но уже в Петербурге. К великому сожалению эти оптические инструменты не сохранились, хотя в составленном Кулибиным "реестре его изобретений" имеется запись, что они "ныне хранятся в Кунсткамере Академии Наук, о чем опубликовано было в Академических ведомостях, особым прибавлением 1769г." 
По распоряжению Екатерины II И. П. Кулибин был принят на службу в Академию Наук в качестве механика и руководителя академическими мастерскими. В соответствии с "Кондициями, на которых нижегородский посадский Иван Кулибин вступает в академическую службу" в его обязанности входило: "1-е, иметь главное смотрение над инструмент альною, слесарною, токарною, столярною и над тою палатою, где делаются оптические инструменты, термометры и барометры, чтоб все работы о успехом и порядочно производимы были, оставя непосредственное смотрение над инструментальною палатою елеву Кесареву... 2-е, делать не скрытное показание академическим художникам во всем том, в чем он сам искусен. 3-е, чистить и дочинивать астрономические и другие при Академии находящиеся часы, телескопы, зрительные трубы и другие, особливо физические инструменты..." [1, с. 480]. Эти кондиции были подписаны Кулибиным 2 января 1770 г., начал же он работать в Академии еще в 1769 г. и оставался на этой службе более тридцати лет. 
В личных и служебных документах Кулибина за 1770- 1777 гг. имеется большое количество "Рапортов в Академическую комиссию" об изготовлении и ремонте телескопов (в основном зеркальных - по схеме Грегори), микроскопов, астролябий. В "Реестре разных механических, физических и оптических изобретений Санкт-Петербургской имп. Академии Наук механика Ивана Петровича Кулибина" имеется запись: "Между тем сделано и исправлено мною при Академии Наук и присылаемых для императорских дворцов разных оптических инструментов, как то: грегорианских и ахроматических телескопов, каковых находящиеся при Академии мастера не исправляли..." [1, с. 426]. 
Уже в первые месяцы своей работы в Академии Наук Кулибин успешно справляется с изготовлением опытного образца двухфутового телескопа и ремонтом грегорианского телескопа, о чем свидетельствует отзыв о нем академика С. Я. Ру-мовского. Кулибин блестяще разбирается во всех тонкостях конструирования оптических инструментов. В своей заметке "К следующему чертежу оглазные стекла искать..." он сообщает о методе нахождения фокуса сферического зеркала для определения местоположения окуляра и приводит при этом рисунок сопровождаемый следующим текстом: "... Трубку же со оглазными стеклами можно доводить до самого фокуса, преломленного от малого плоского приземного зеркала, которую трубку дияметром больше не делать внутренних слепых а и б рысей, чтобы не загораживала преломлению в падающих во обеих зеркалах около центров лучам" [1, с. 379-380]. Конструкторский талант Кулибина проявляется и в его заметке "О тубусе или гершелевом телескопе": "Большое зеркало устанавливать так: вставить в конец отверстия тот кружок со стеблем, в который привинчивается приземное зеркало в самом грубы центре, и на том месте, где во время смотрения приводится, а потом, вставя большое зеркало, смотреть чрез край помянутого приземного кружка сверху на исподний край большого зеркала в четырех местах крестообразно, а потом и на осьмых долях приведя так, чтобы внутренности трубы везде казались равны. Потом, привинтя приземное зеркало, вставя оглазных стекол фундаментальную трубку, в нее вставя кружок о центровой скважинкой, установить преспект трубы около приземного зеркала во все стороны равно" [1, с. 394-395].  
Представление о характере работы И. П. Кулибина в Академических мастерских дает также "Опись сделанным вещам и инструментам в инструментальной палате в хранении", приложенная к личному делу его преемника механика Академии П. Кесарева, в которой перечисляются "грегорианский телескоп 14-ти дюймового фокуса", "сделанный для опыту по наставлению покойного профессора Д. Эйлера сложный прозрачный микроскоп..." и т. д. [2]. 
С целью повысить качество изготовляемых оптической мастерской инструментов Кулибин предпринял в 1771 г. изготовление новых шлифовальных форм, так как старые формы, как он писал, "все источены и ни одной пары верной не имеется". Он сообщил Академической комиссии, ведавшей делами мастерских, что намерен изготовить "для точения и полирования стекол и метальных зеркал несколько пар форм разной величины, набирая от линии до дюйма" от дюйма до фута, от фута до несколько футов, прибавляя по нескольку одна другой больше, чрез которыя можно было бы делать микроскопы солнечный и сложныя разных пропорций, зритель-ныя трубы, разной величины телескопы и протчия зрительныя стекла разных фокусов" [3, с. 140-141]. 
30 августа 1796 г. Кулибин пишет заметку "О делании первой машины для стекол" с поддетой "Прочесть обстоятельнее" [1, с. 398], в которой сообщает о своем проекте постройки станка для шлифовки и полировки зеркал и возможности его использования для изготовления стеклянных объектовов. В сохранившихся чертежах Кулибина имеется несколько рисунков, сконструированных им станков для шлифовки и полировки линз. В своей заметке "О шлифовке и полировке криволинейного зеркала" Кулибин дает описание методов шлифовки зеркал при помощи наждака и полировальника из красной меди: "Когда на показанном шпиле выточено будет по лекалу зеркало, тогда шлифовать его прямолинейным движением наждаком, насыпая на частицы красной меди вставленные в рукоятку полира и приноровленные на таком же вертолуге или на подобном тому, как описано выше, а частицы со-шлифовывать в центре такой штуки, которая бы была точно согласна с конкавом того зеркала. Примером палагая быть зеркалу в дияметре 6 дюймов, а сию из красной меди частицу сделать во один только дюйм или и меньше, а больше не делать, для того что в центре зеркало круче, а когда края у полирной штучки будут на центре зеркальном, то уже плотно не прижмется, для чего должно быть из красной меди штукам еще менее дюйма диаметром, а как сошлифовано будет очень чисто и верно, то, на такие медные частицы наклея гарнусом тафту, полировать с цинажем" [1, с. 383].
 
Иван Петрович Кулибин 
(1735-1818)            
 
 
 
 
 
 
 
 
 
 
 
 

 
Станок для шлифовки и полировки оптических линз. 
Собственноручный рисунок И.П.Кулибина

В "Мнении о криволинейных  зеркалах" [1, с. 383] Кулибин приводит сравнение относительной сложности  обработки сферических и асферических зеркал. Он подробно рассматривает процесс изготовления вогнутого зеркала начиная от заготовки диска до полировки включительно. Рецептура сплавов для изготовления металлических зеркал, способы варки и рецептура флинтового стекла привлекали внимание Кули-бина. В своей работе изобретатель опирается на опыт и традиции, накопленные сотрудниками старейшей академической мастерской (оптическая мастерская была основана в 1726 г.), где со времени Ломоносова было налажено производство многих оптических инструментов и где работали опытнейшие и искуснейшие оптики-механики, например семья Беляевых. 
Совместно с И. И. Беляевым И. П.Кулибин поднял работу оптической мастерской на большую высоту. Количество и качество выпускавшихся ею оптических инструментов значительно повысилось, В оптическую мастерскую стали обращаться с заказами на линзы и оптические инструменты не только академики и профессора самой Академии Наук, но и посторонние лица. 
Большой интерес представляют чертежи Кулибина. На одном из его рисунков приведен чертеж Кулибина с изображением оптических схем микроскопа, полемоскопа и зрительной трубы. Здесь особенно интересен второй чертеж, представляющий собой схему пятилинзового микроскопа с двояко-вогнутой линзой, помещенной между коллективом и друхлинзовым окуляром. Такая линза должна несколько увеличивать изображение без отодвигания окуляра от объектива, т.е. делать излишним удлинение тубуса микроскопа, если ее поместить непосредственно между объективом и окуляром, Кулибин, однако, "преследовал другую цель: компенсировать то уменьшение изображения, которое вызывается коллективом. Если это так, то это представляет собой его оригинальную идею. Объектив этого микроскопа Кулибина плосковыпуклый, причем он повернут плоской стороной к объекту. Мы уже видели, что Кёфф впервые применил подобный объектив в своем микроскопе. На полезность этого приема указывал позже Эйлер. Вполне вероятно, что Кулибин самостоятельно пришел к этой идее, которая впоследствии, начиная с 20-30-х годов XIX в., получила широкое распространение в ахроматических микроскопах" [1, с. 235]. 
Кулибин был не только великолепным конструктором оптических инструментов, но и хорошо разбирался в их теории. В "Мнении о сферических зеркалах", Кулибин писал: "1-е. Сферические зеркала, имея длинные радиусы и фокусы в рассуждении преломляющихся лучей, по малости дияметра зеркального и по длине фокуса во одной точке лучи собрать не могут, ибо в зеркале хотя на один волос в краю его будет крутости сферической, то в фокусе выйдет фальши столько больше, во сколько раз длиннее фокус и полудияметра зеркального... 2-е. По такой длине как от большого зеркала, так и малого приземного, параллельности или фокусы верно во один пункт установить трудно" [1, с. 382]. Таким образом, Кулибин имел четкие представления о сферической аберрации вогнутого сферического зеркала. В своем "Мнении о криволинейных зеркалах" он предлагает уменьшить величину сферической аберрации вогнутого зеркала за счет придания этому зеркалу асферической формы, благодаря которой "... параллельность между большим и малым зеркалом сыскать легче, также и пункты фокусов на одной линее сойдутся удобнее" [1, с.383] В заметке "О объективном стекле" Кулибин проводит сравнение оптических свойств трехлинзового объектива телескопа о металлическим вогнутым зеркалом. При этом на полях рукописи им делается помета: "Рассмотреть и сие попорядочнее" [1, с. 391]. Этот замысел он осуществляет в своей заметке от 3 сентября 1796 г. "О поощрении к делу стекла: "В сравнении ахроматических телескопов, у коих объективное стекло собрано из 3-х стекол, следственно должно вышлифовать и выполировать 6 сторон у стекол, то как бы верно ни вычисленно было, однако в таком множестве должно быть втрое более погрешности в полировке, нежели в одном стекле. На первый же случай у криволинейного хотя и будет от неверности линии и полировки погрешности втрое более одного ахроматического стекла, то и тем может с трех стекольным объективом ахроматического телескопа сравняться. Того же 3-го сентября 1796-го года" [1, с. 401]. 
Во время своей работы в Петербургской Академии Наук Кулибин накопил большой опыт в проектировании и технике изготовления самых различных оптических приборов. В конце 70-х годов XVIII в. им было создан фонарь с зеркальным отражателем, явившийся предшественником современного прожектора. Кулибин довел разработку своего проекта до конца: он не только создал несколько проектов фонарей для различных применений (уличного освещения, освещения дворцов, фонарей для маяков, экипажей, промышленных предприятий и т. д.), но и детально разработал технологию их изготовления. При этом изобретатель конструировал и различные приспособления и станки, необходимые для изготовления фонарей. 
Огромное значение в развитии работ Кулибина в области конструирования различных оптических инструментов сыграло то обстоятельство, что он работал в Академии в тот период, когда здесь успешно развивались исследования по технической оптике. В период с 1768 по 1771 гг. Л. Эйлером были написаны и опубликованы "Письма к немецкой принцессе..." [5] и фундаментальная трехтомная диоптрика [6], содержащая основы теории и расчета сложных ахроматических объективов телескопов и микроскопов. 
Под непосредственным руководством Кулибина в оптической и инструментальных мастерских Петербургской Академии Наук происходило конструирование первого в Мире русского ахроматического микроскопа по указаниям Л. Эйлера и Н. Фусса [7]. 
Вызывает, однако, удивление одно обстоятельство: в печати не появилось ни одного сообщения о новом микроскопе. Вероятно это было связано с тем, что этот инструмент получился не совсем удачным. Причина неудачи по-видимому состояла в исключительной трудности изготовления ахроматического трехлинзового объектива микроскопа. Каждая из линз этого объектива должна была быть диаметром около 3,5 мм (1/7 дюйма) и с радиусами кривизны, рассчитанными до тысячных долей дюйма. При этом общая толщина объектива должна была составлять около 1,4 мм, а промежутки между линзами - около 0,4 мм. Переводчик книги Н. Фусса на немецкий язык Г. С. Клюгель в 1778 г. писал, что "Столь тонкие линзы, какие здесь требуются, вряд ли могли быть изготовлены даже самым искусным мастером" [1, с. 53]. Действительно, при том уровне оптической технологии, который был в 70-х годах XVIII в., осуществить в точности ахроматический микроскоп Эйлера-Фусса было невероятно трудно, практически невозможно. В 1784 г., уже после смерти Эйлера, в Петербурге академиком Ф. Т. У. Эпину-сом был расчитан и изготовлен первый в мире ахроматический микроскоп [8]. в Западной Европе первые ахроматические микроскопы появились лишь в 1807 г. 
В заключение необходимо отметить, что деятельность Кулибина в области инструментальной оптики всегда отвечала первоочередным задачам развития русской науки и техники и внесла достойный вклад в сокровищницу мировой культуры, в дело развития методов обработки и шлифовки линз.

Литература 
1. Рукописные материалы И. П. Кулибина в Архиве АН СССР. М.-Л.: Изд-во АН СССР, 1953. 
2. Архив РАН, ф. 296, ол. 1, № 515, ил. 1-12; № 512, ил. 1-2; № 511, ил. 1-1 об. 
3. Труды Ин-та истории естествознания АН СССР. Т. 1. М.-Л., 1947. 
4. Архив РАН, ф. 296, ол. 1, № 517, ил. 1-1 об. 
5. Ейлер Л. Письма... писанные к некоторой немецкой принцессе. Ч. I. СПб., 1768; ч. II, 1772, ч. 3, 1774. 
6. Euler L. Dioptrica. S. Pet, 1769-1771. 
7. Гуриков В. А. История прикладной оптики. М.: Наука, 1993. 
8. Гуриков В. А. Первый ахроматический микроскоп. Природа. 1981. № 6.

Информация о работе Микроскоп.