Автор работы: Пользователь скрыл имя, 13 Июля 2009 в 07:43, Не определен
Выпускная работа на тему: Почвы, их происхождение, свойства и их роль в жизни
Сп – величина поверхностного стока;
Св – внутрипочвенный сток (фильтрация и др.)
Типы водного режима. Средний годовой водный баланс определяет тип водного режима почв. В результате проявления того или иного типа водного режима по почвенному профиля распределяются растворенные и диспергированные вещества, возникают генетические горизонты и создается общий облик (тип) почв той или иной зоны. Тип водного режима почвы состоит из годовых и сезонных водных режимов или посезонного распределения воды а почве. Тип водного режима почвы и элементы его отличаются известной динамичностью.
Типы и подтипы режима почв
(Составлена
по литературным источникам)
|
О б
о з н а ч е н и я:
КУ – коэффициент увлажнения, ВЗ
– влажность завядания, ММВ –
максимальная молекулярная влагоемкость,
КВ – капиллярная влагоемкость,
ППВ –
предельная полевая влагоемкость, ПВ
– полная влагоемкость.
Тепловые
свойства и тепловой
режим почв
Почва
характеризуется тепловыми
Количество тепла, получаемое поверхно стью Земли, убывает от экватора к полюсу.
Почва поглощает огромное количество солнечного тепла, отражая при этом от 0,1 до 0,3 лучистой энергии. Отношение количества отраженной поверхностью Земли лучистой энергии (А) к количеству падающей (Е), выраженное в процентах, называется о т р а ж а т е л ь н о й с п о с о б- н о с т ь ю, или альбедо поверхности. Альбедо измеряется специальными приборами – альбедометрами.
Альбедо колеблется (%): чернозем влажный – 8, сухой – 14, серозем влажный – 10 – 12, сухой – 25 – 30, глина – 16 – 23, трава зеленая – 26, песок белый и желтый – 34 – 40, пшеница – 10 – 25, хлопчатник – 20 – 22, снег сухой – 88 – 91 (А. Ф. Чудновский, 1959).
Кроме основного источника лучистой энергии, в почву поступает тепло, выделяемое при экзотермических, физико-химических и биохимических реакциях. Однако тепло, получаемое в результате биологических и фотохимических процессов, почти не изменяет темммпературу почвы. В летнее время сухая нагретая почва может повышать температуру вследствие смачивания. Эта теплота известна род названием т е п л о т ы с м а ч и в а н и я. Она проявляется при слабом смачивании почв, богатых органическими и минеральными (глинистыми) коллоидами.
Весьма незначительное нагревание почвы может быть связано с внутренней теплотой Земли.
Из других второстепенных источников тепла следует назвать «скрытую теплоту» фазовых превращений, освобождающуюся в процессе кристаллизации, конденсации и замерзании воды и т. д.
В зависимости от механического состава, содержания перегноя, окраски и увлажнения различают теплые и холодные почвы.
Теплоемкость определяется количеством тепла в калориях, которое необходимо затратить, чтобы поднять температуру единицы массы (1г) или объема (1 см3) почвы на 1оС.
Из
таблицы видно, что с увели
чением влажности теплоемкость меньше
возрастает у песков, больше у глины
и еще больше у торфа. Поэтому
торф и глина являются холодными
почвами, а песчаные – теплыми.
|
Теплопроводность и температуропроводность. Т е п л о п р о в о д н о с т ь – способность почвы проводить тепло. Она выражается количеством тепла в калориях, проходящего в секунду через площадь поперечного сечения 1 см2 через слой 1 см при температурном градиенте между двумя поверхностями 1оС.
Воздушно-сухая почва обладает более низкой теплопроводностью, чем влажная. Это объясняется большим тепловым контактом между ьтдельными частицами почвы, объединенными водными оболочками.
Наряду с теплопроводностью различают т е м п е р а т у р о п р о в о д н о с т ь – ход изменения температуры в почве. Температуропроводность характеризует изменен ие температуры на единице площади в единицу времени. Она равна теплопроводности, деленной на объемную теплоемкость почвы.
При
кристаллизации льда в порах почвы
проявляется кристаллизационная сила,
вследствие чего закупориваются и расклиниваются
почвенные поры и возникает так называемое
м о р о з н о е п у ч е н и е. Рост кристаллов
льда в крупных порах вызывает подток
воды из мелких капилляров, где в соответствии
с уменьшающимися их размерами замерзание
воды запаздывает.
Зависимость температуры замерзания воды от диаметра капилляров
(по
Огиевскому)
|
В связи с тем, что многие источники притока тепла и расходования его исчисляются еще недостаточно точно, тепловой баланс определяется приближенно по упрощенной формуле:
Е = А(приток) – Б(расход),
а также
Rб = B + L или Rб – V = B + L
где Rб – радиационный баланс (приход и расход лучистой энергии);
В – теплообмен в деятельном слое (почва + растения);
L – теплообмен в воздухе;
V – обмен тепла, связанный с влагооборотом – испарением и конденсацией.
Источники поступающего в почву тепла и расходования его – неодинаковые для различных зон, поэтому тепловой баланс почв может быть и положительным и отрицательным. В первом случае почва получает тепла больше, чем отдает, а во втором – наоборот. Но тепловой баланс почв любой зоне с течением времени заметно изменяется.
Информация о работе Учет производственных запасов на складах