Автор работы: Пользователь скрыл имя, 10 Июня 2015 в 12:56, курсовая работа
Большинства коммерческих предприятий, прежде чем начать свое производство, в качестве основной цели ставят получение прибыли. Прибыль предприятия во многом зависит от цены продукции и затрат на ее производство. Цена продукции на рынке есть следствие взаимодействия спроса и предложения. Под воздействием законов рыночного ценообразования, в условиях свободной конкуренции цена продукции не может быть выше или ниже по желанию производителя или покупателя – она выравнивается автоматически. Другое дело – затраты, формирующие себестоимость продукции.
Введение
Теоретические аспекты анализа себестоимости продукции
Понятия, экономическое содержание и виды себестоимости
Классификация затрат, формирующих себестоимость продукции
Факторы, влияющие на себестоимость продукции
Практические аспекты анализа влияния факторов на себестоимость продукции
Понятия, типы и задачи факторного анализа
Классификация факторов АХД
Систематизация факторов в АХД
Детерминированное моделирование
Совершенствование
Снижение затрат на производство и реализацию продукции
Предложения по изменению структуры себестоимости продукции
Количественными считаются факторы, которые выражают количественную определенность явлений (количество рабочих, оборудование, сырье и т.д.). Качественные факторы определяют внутренние качества, признаки и особенности изучаемых объектов (производительность труда, качество продукции, плодородие почвы и т.д.).
Большинство изучаемых факторов по своему составу являются сложными, состоят из нескольких элементов. Однако есть и такие, которые не раскладываются на составные части. В связи с этим факторы делятся на сложные (комплексные) и простые (элементные). Примером сложного фактора является производительность труда, а простого – количество рабочих дней в отчетном периоде.
Как уже указывалось, одни факторы оказывают непосредственное влияние на результативный показатель, другие – косвенное. По уровню соподчиненности (иерархии) различают факторы первого, второго, третьего и последующих уровней подчинения. К факторам первого уровня относят те, которые непосредственно влияют на результативный показатель. Факторы, которые определяют результативный показатель косвенно, при помощи факторов первого уровня, называются факторами второго уровня и т.д. К факторам же третьего уровня относятся продолжительность рабочего дня и среднечасовая выработка.
2.3 Систематизация
факторов в анализе
Системный подход в АХД вызывает необходимость взаимосвязанного изучения факторов с учетом их внутренних и внешних связей, взаимодействие и соподчиненности, что достигается с помощью систематизации.
Одним из способов систематизации факторов является создание детерминированных факторных систем. Создать факторную систему – значит представить изучаемое явление в виде алгебраической суммы, частного или произведения нескольких факторов, определяющих его величину и находящийся с ним в функциональной зависимости.
Например, объем валовой продукции промышленного предприятия можно представить в виде произведения двух факторов первого порядка: среднего количества рабочих и среднегодовой выработки продукции одним рабочим за год, которая в свою очередь зависит непосредственно от количества отработанных дней одним рабочим в среднем за год и среднегодовой выработки продукции рабочим. Последняя система также может быть разложена на продолжительность рабочего дня и среднечасовую выработку.
Развитие детерминированной факторной системы достигается, как правило, за счет детализации комплексных факторов. Элементные (в нашем примере – количество рабочих, количество отработанных дней, продолжительность рабочего дня) не раскладываются на сомножители, так как по своему содержанию они однородны. С развитием системы комплексные факторы постепенно детализируются на менее общие, те в свою очередь еще не менее общие, постепенно приближаясь по своему аналитическому содержанию к элементам (простым).
Однако необходимо заметить, что развитие факторных систем до необходимой глубины связано с некоторыми методическими трудностями и прежде всего с трудностью нахождения факторов общего характера, которые можно было бы представить в виде произведения, частного или алгебраической суммы нескольких факторов. Поэтому обычно детерминированные системы охватывают наиболее общие факторы. Между тем исследование более конкретных факторов В АХД имеет существенно большее значение, чем общих.
Отсюда следует, что совершенствование методики факторного анализа должно быть направлено на взаимосвязанное изучение конкретных факторов, которые находятся, как правило, в стохастической зависимости с результативными показателями.
Большое значение в исследовании стохастических взаимосвязей имеет структурно – логический анализ связи между изучаемыми показателями. Он позволяет установить наличие или отсутствие причинно – следственных связей между исследуемыми показателями, изучить направление связи, форму зависимости и т.д., что очень важно при определении степени их влияния на изучаемое явление и при обобщении результатов анализа.
Анализ структуры связи изучаемых показателей в АХД осуществляется с помощью построения структурно – логической блок – схемы, которая позволяет установить наличие и направление связи не только между изучаемыми факторами и результативным показателем, но и между самими факторами. Построив блок – схему, можно увидеть, что среди изучаемых факторов имеются такие, которые более или менее непосредственно воздействуют на результативный показатель, и такие, которые воздействуют не столько на результативный показатель, сколько друг на друга.
Прежде всего, необходимо установить наличие и направление связи между себестоимостью продукции и каждым фактором. Безусловно, между ними существует тесная связь. Непосредственное влияние на себестоимость продукции оказывает в данном примере только урожайность культур. Все остальные факторы влияют на себестоимость продукции не только прямо, но и косвенно, через урожайность культур и производительность труда. Например, количество внесенных удобрений в почву содействует повышению урожайности культур, что при прочих одинаковых условиях обусловливает снижение себестоимости единицы продукции. Однако необходимо учитывать и то, что увеличение количества внесенных удобрений приводит к росту суммы затрат на гектар посева. И если сумма затрат возрастает более высокими темпами, чем урожайность, то себестоимость продукции будет снижаться, а не повышаться. Значит, связь между этими двумя показателями может быть и прямой, и обратной. Аналогично влияет на себестоимость продукции и качество семян. Приобретение элитных, высококачественных семян вызывает рост суммы затрат. Если они возрастают в большей степени, чем урожайность от применения более высококачественных семян, то себестоимость продукции будет увеличиваться, и наоборот.
Степень механизации производства влияет на себестоимость продукции и прямо, и косвенно. Повышение уровня механизации вызывает рост затрат на содержание производства основных средств. Однако при этом увеличивается производительность труда, растет урожайность, что содействует снижению себестоимости продукции.
Исследование взаимосвязей между факторами показывает, что из всех изучаемых факторов отсутствует причинно – следственная связь между качеством семян, количеством удобрений и механизацией производства. Отсутствует также непосредственная обратная зависимость данных показателей от уровня урожайности культуры. Все остальные факторы прямо или косвенно влияют друг на друга.
Таким образом, систематизация факторов позволяет более глубоко изучить взаимосвязь факторов при формировании величины изучаемого показателя, что имеет важное значение на следующих этапах анализа, особенно на этапе моделирования исследуемых показателей.
2.4 Детерминированное моделирование.
Одной из задач факторного анализа является моделирование взаимосвязей между результативными показателями и факторами, которые определяют их величину.
Моделирование – это один из важнейших методов научного познания, с помощью которого создается модель (уловный образ) объекта исследования. Сущность его заключается в том, что взаимосвязь исследуемого показателя, с факторными системами, передается в форме конкретного математического уравнения.
В факторном анализе различают модели детерминированные (функциональные) и стохастические (корреляционные). С помощью детерминированных факторных моделей исследуется функциональная связь между результативным показателем (функцией) и факторами (аргументами).
При моделировании детерминированных факторных систем необходимо выполнять ряд требований.
1. Факторы, включаемые в
модель, и сами модели должны
иметь определенно выраженный
характер, реально существовать, а
не быть придуманными
2. Факторы, которые входят
в систему, должны быть не только
необходимыми элементами
1)ВП=ЧРхГВ:
2)ГВ=ВП/ЧР, где ВП - валовая продукция предприятия; ЧР - численность работников на предприятии; ГВ — среднегодовая выработка продукции одним работником.
В первой системе факторы находятся в причинной связи с результативным показателем, а во второй — в математическом соотношении. Значит, вторая модель, построенная на математических зависимостях, имеет меньшее познавательное значение, чем первая.
3. Все показатели факторной
модели должны быть
4. Факторная модель должна
обеспечивать возможность
В детерминированном анализе выделяют следующие типы наиболее часто встречающихся факторных моделей.
1. Аддитивные модели:
Они используются в тех случаях, когда результативный показатель представляет собой алгебраическую сумму нескольких факторных показателей.
2. Мультипликативные модели:
Этот тип моделей применяется тогда, когда результативный показатель представляет собой произведение нескольких факторов.
3. Кратные модели:
Они применяются тогда, когда результативный показатель получают делением одного факторного показателя на величину другого.
4. Смешанные (комбинированные) модели - это сочетание в различных комбинациях предыдущих моделей:
Моделирование мультипликативных факторных систем в АХД осуществляется путем последовательного расчленения факторов исходной системы на факторы-сомножители. Например, при исследовании процесса формирования объема производства продукции (см. рис. 5.2) можно применять такие детерминированные модели, как:
Эти модели отражают процесс детализации исходной факторной системы мультипликативного вида и расширения ее за счет расчленения на сомножители комплексных факторов. Степень детализации и расширения модели зависит от цели исследования, а также от возможностей детализации и формализации показателей в пределах установленных правил.
Аналогичным образом осуществляется моделирование аддитивных факторных систем за счет расчленения одного или нескольких факторных показателей на составные элементы.
Как известно, объем реализации продукции равен:
VРП = VBП - VИ,
где VBП - объем производства; VИ - объем внутрихозяйственного использования продукции.
В хозяйстве продукция использовалась в качестве семян (С) и кормов (К). Тогда приведенную исходную модель можно записать следующим образом: VРП = VBП - (С + К).
К классу кратных моделей применяют следующие способы их преобразования: удлинения, формального разложения, расширения и сокращения.
Первый метод предусматривает удлинение числителя исходной модели путем замены одного или нескольких факторов на сумму однородных показателей. Например, себестоимость единицы продукции можно представить в качестве функции двух факторов: изменения суммы затрат (3) и объема выпуска продукции (VBП). Исходная модель этой факторной системы будет иметь вид
Если общую сумму затрат (3) заменить отдельными их элементами, такими, как заработная плата (3П), сырье и материалы (СМ), амортизация основных средств (А), накладные расходы (HP) и др., то детерминированная факторная модель будет иметь вид аддитивной модели с новым набором факторов:
где Х1 — трудоемкость продукции; Х2 - материалоемкость продукции; Х3 - фондоемкость продукции; Х4 - уровень накладных расходов.
Способ формального разложения факторной системы предусматривает удлинение знаменателя исходной факторной модели путем замены одного или нескольких факторов на сумму или произведение однородных показателей. Если В = L+М+N+Р,то
В результате, получили конечную модель того же вида, что и исходной факторной системы (кратную модель). На практике такое разложение встречается довольно часто. Например, при анализе показателя рентабельности производства (R):
где П — сумма прибыли от реализации продукции; 3 — сумма затрат на производство и реализацию продукции. Если сумму затрат заменить на отдельные ее элементы, конечная модель в результате преобразования приобретет следующий вид:
Себестоимость одного тонно-километра зависит от суммы затрат на содержание и эксплуатацию автомобиля (3) и от его среднегодовой выработки (ГВ). Исходная модель этой системы будет иметь вид: Сткм = 3 / ГВ. Учитывая, что среднегодовая выработка машины в свою очередь зависит от количества отработанных дней одним автомобилем за год (Д), продолжительности смены (П) и среднечасовой выработки (ЧВ), мы можем значительно удлинить эту модель и разложить прирост себестоимости на большее количество факторов:
Метод расширения предусматривает расширение исходной факторной модели за счет умножения числителя и знаменателя дроби на один или несколько новых показателей. Например, если в исходную модель
Y=A/B
ввести новый показатель с, то модель примет вид
В результате получилась конечная мультипликативная модель в виде произведения нового набора факторов.
Этот способ моделирования очень широко применяется в анализе. Например, среднегодовую выработку продукции одним работником (показатель производительности труда) можно записать таким образом: ГВ = ВП /ЧР. Если ввести такой показатель, как количество отработанных дней всеми работниками (D), то получим следующую модель годовой выработки:
Информация о работе Теоретические аспекты анализа себестоимости продукции