Контрольная работа по «Ботаника»

Автор работы: Пользователь скрыл имя, 15 Января 2015 в 16:10, контрольная работа

Описание работы

Органоиды (их еще называют органеллами) - постоянные составляющие элементы любой клетки, которые делают ее целостной и выполняют определенные функции. Это структуры, которые являются жизненно необходимыми для поддержания ее деятельности.
К органоидам относятся ядро, лизосомы, эндоплазматическая сеть и комплекс Гольджи, вакуоли и везикулы, митохондрии, рибосомы, а также клеточный центр (центросома).

Файлы: 1 файл

ботаника.doc

— 303.50 Кб (Скачать файл)

МИНИСТРЕСТВО СЕЛЬСКОГО ХОЗЯЙСТВА

РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

 «АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ  АГРАРНЫЙ УНИВЕРСИТЕТ»

 

Кафедра ботаники, физиологии растений и кормопроизводства

Контрольная работа № 1

По дисциплине: «Ботаника»

Выполнила: студентка 1 курса, заочного отделения                                           

Специальности: «Технология производства и                                 переработки сельскохозяйственной продукции»

Глушкова Е.Ф.

Шифр:

Проверил:

 

 

 

 

 

 

 

 

 

Барнаул 2015

 

Органоиды (их еще называют органеллами) - постоянные составляющие элементы любой клетки, которые делают ее целостной и выполняют определенные функции. Это структуры, которые являются жизненно необходимыми для поддержания ее деятельности.

К органоидам относятся ядро, лизосомы, эндоплазматическая сеть и комплекс Гольджи, вакуоли и везикулы, митохондрии, рибосомы, а также клеточный центр (центросома). Сюда также относят структуры, которые образуют цитоскелет клетки (микротрубочки и микрофиламенты), меланосомы.

Классификация делит органоиды на немембранные и мембранные. Немембранные – это клеточный центр, клеточное ядро и рибосомы, а также микротрубочки и микрофиламенты. К мембранным органоидам относятся ЭПС, комплекс Гольджи и митохондрии, а также лизосомы и пластиды.

Хотелось бы подробнее остановиться на пластидах растительной клетки.

Пластиды – это  органеллы, характерные исключительно для растительных клеток. Они являются достаточно крупными клетками. Эти органоиды играют важную роль в метаболизме и отделены от цитоплазмы двойной мембраной. Кроме этого, в них может образовываться упорядоченная система внутренних мембран. Пластиды развиваются из протопластид – сферических недеффиренцированных телец, которые содержатся в растущих частях растения. Они окружены двойной мембраной и заполнены матриксом. В матриксе содержится ДНК и рибосомы прокариотического типа. Пропластиды способны делиться. Из них на свету формируются хлоропласты, в глубине стебля и в подземных органах – бесцветные лейкопласты. Из хлоропластов и иногда лейкопластов образуются хромопласты.

Хлоропласты — пластиды высших растений, в которых идет процесс фотосинтеза, т. е. использование энергии световых лучей для образования из неорганических веществ (углекислого газа и воды) органических веществ с одновременным выделением в атмосферу кислорода. Хлоропласты имеют форму двояковыпуклой линзы, размер их около 4-6 мкм. Находятся они в паренхимных клетках листьев и других зеленых частей высших растений. Число их в клетке варьирует в пределах 25-50.

Снаружи хлоропласт покрыт оболочкой, состоящей из двух липопротеиновых мембран, внешней и внутренней. Обе мембраны имеют толщину около 7нм, они отделены друг от друга межмембранным пространством около 20-30нм. Внутренняя мембрана хлоропластов, как и других пластид, образует складчатые впячивания внутрь матрикса или стромы. В зрелом хлоропласте высших растений видны два типа внутренних мембран. Это - мембраны, образующие плоские, протяженные ламеллы стромы, и мембраны тилакоидов, плоских дисковидных вакуолей или мешков.

Связь внутренней мембраны хлоропласта с мембранными структурами внутри него хорошо прослеживается на примере мембран ламелл стромы. В этом случае внутренняя мембрана хлоропласта образует узкую (шириной около 20нм.) складку, которая может простираться почти через всю пластиду. Таким образом, ламелла стромы может представлять собой плоский полый мешок или же иметь вид сети из разветвленных и связанных друг с другом каналов, располагающихся в одной плоскости. Обычно ламеллы стромы внутри хлоропласта лежат параллельно и не образуют связей между собой.

Кроме мембран стромы в хлоропластах обнаруживаются мембранные тилакоиды. Это плоские замкнутые мембранные мешки, имеющие форму диска. Величина межмембранного пространства у них также около 20-30нм. Такие тилакоиды образуют стопки наподобие столбика монет, называемые гранами. Число тилакоидов на одну грану варьирует: от нескольких штук до 50 и более. Размер таких стопок может достигать 0,5 мкм, поэтому граны видны в некоторых объектах в световом микроскопе. Количество гран в хлоропластах высших растений может достигать 40-60. Тилакоиды в гране сближены друг с другом так, что внешние слои их мембран тесно соединяются; в месте соединения мембран тилакоидов образуется плотный слой толщиной около 2нм. В состав граны кроме замкнутых камер тилакоидов обычно входят и участки ламелл, которые в местах контакта их мембран с мембранами тилакоидов тоже образуют плотные 2-нм слои. Ламеллы стромы, таким образом, как бы связывают между собой отдельные граны хлоропластов. Однако полости камер тилакоидов всегда замкнуты и не переходят в камеры межмембранного пространства ламелл стромы.

В матриксе (строме) хлоропластов обнаруживаются молекулы ДНК, рибосомы; там же происходит первичное отложение запасного полисахарида, крахмала, в виде крахмальных зерен.

В хлоропластах содержатся различные пигменты. В зависимости от вида растений это:

хлорофилл:

- хлорофилл А (сине-зеленый) - 70 % (у  высших растений и зеленых  водорослей);

- хлорофилл В (желто-зеленый) - 30 % (там  же);

- хлорофилл С, D и E встречается реже - у других групп водорослей;

Иногда зеленый цвет маскируется другими пигментами хлоропластов (у красных и бурых водорослей) или клеточного сока (у лесного бука). Клетки водорослей содержат одну или несколько различной форм хлоропластов.

Функцией хлоропластов является фотосинтез, т.е. улавливание и преобразование световой энергии. Именно здесь происходят световые реакции фотосинтеза — поглощение хлорофиллом световых лучей и превращение энергии света в энергию возбужденных электронов. Электроны, возбужденные светом, т. е. обладающие избыточной энергией, отдают свою энергию на разложение воды и синтез АТФ. При разложении воды образуются кислород и водород. Кислород выделяется в атмосферу, а водород связывается белком ферредоксином. Ферредоксин затем вновь окисляется, отдавая этот водород веществу-восстановителю, сокращенно обозначаемому НАДФ. НАДФ переходит в восстановленную форму — НАДФ-H2. Таким образом, итогом световых реакций фотосинтеза является образование АТФ, НАДФ-H2 и кислорода, причем потребляются вода и энергия света.

В АТФ аккумулируется много энергии — она затем используется для синтезов, а также для других нужд клетки.

 

 

Лейкопласты – это бесцветные круглые пластиды, в которых обычно накапливаются запасные питательные вещества, в основном крахмал. Размеры этих органелл относительно небольшие. Они округлой либо слегка продолговатой формы, характерны для всех живых клеток растений. В лейкопластах осуществляется синтез из простых соединений более сложных – крахмала, жиров, белков, которые сохраняются про запас в клубнях, корнях, семенах, плодах. Под электронным микроскопом заметно, что каждый лейкопласт покрыт двухслойной мембраной, в строме есть только один или небольшое число выростов мембраны, основное пространство заполнено органическими веществами. В зависимости от того, какие вещества накапливаются в строме, лейкопласты делят на амилопласты, протеинопласты и элеопласты. Все виды пластид имеют общее происхождение и способны переходить из одного вида в другой. Так, превращение лейкопластов в хлоропласты наблюдается при позеленении картофельных клубней на свету, а в осенний период в хлоропластах зеленых листьев разрушается хлорофилл, и они трансформируются в хромопласты, что проявляется пожелтением листьев.

Хромопласты – пластиды оранжево-красного и желтого цвета,  образующиеся из лейкопластов и хлоропластов в результате накопления в их строме каротиноидов. Они встречаются в клетках лепестков, зрелых плодов, редко корнеплодов, а также в осенних листьях.

Хромопласты - это конечный этап в развитии пластид.

Строение хромопласта схожее с остальными пластидами. Хромопласт имеет оболочку, которая образованна двумя мембранами. Внешняя мембрана предохраняет от слияния с цитоплазмой, внутренняя, ограничивает содержание хромопласта. Внутри оболочки хромопласт заполнен стромой (белковая основа), в которой находятся кольцевая ДНК и красящие пигменты, каротиноиды. Каротиноиды могут растворяться в липидных включениях, накапливаться в белковых фибриллах, или откладываться в виде кристаллов. Форма органелл разнообразная, зависит от характера включений.   

Главная функция хромопластов, это окрашивание лепестков цветов и зрелых плодов. Яркая окраска предназначена для привлечения насекомых, что опыляют растение и животных которые, поедая плоды, распространяют семена. 
      Физиологическая роль хромопластов еще не до конца изучена. Исследования указывают на то, что каротиноиды принимают участие в процессах окисления и восстановления, являясь чем-то вреде светофильтра для хлоропластов. А также непосредственно участвуют в процессах роста, и размножения. Хромопласт основное место локализации растительных пигментов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ризодерма (эпиблема), первичная покровная ткань растений, формирующаяся у молодых корней вблизи конуса нарастания. Покрывает корешок в один слой клеток и образует зону всасывания длиной в несколько сантиметров. В этой части корешка происходит активное всасывание растением содержащихся в почве воды и минеральных солей. Клетки ризодермы образуют выросты – корневые волоски, благодаря которым поглощающая поверхность корня многократно увеличивается, а само растение прочно закрепляется в почве. Через ризодерму в почву выделяются вещества, облегчающие избирательное поглощение ионов, а также происходит взаимодействие растения с бактериями, грибами и другими организмами, населяющими ризосферу – слой почвы, примыкающий к корню. По мере роста корешка старые, более удалённые от его кончика участки ризодермы отмирают, а вместо них возникают новые. Каждая клетка эпиблемы потенциально способна к образованию корневого волоска, но чаще корневые волоски формируются лишь из части клеток, получивших специальное название трихобластов. Корневые волоски обычно одноклеточные, развиваются в результате выпячивания наружной стенки трихобласта и достигают в длину 1-2 мм. Обычно они существуют в течение нескольких дней, а затем отмирают. Атрихобласты - клетки молодого участка корня, из которых не образуются корневые волоски. Корневые волоски располагаются в зоне всасывания, функция которой понятна из ее названия. На корне она занимает участок от нескольких миллиметров до нескольких сантиметров. В отличие от зоны роста участки этой зоны уже не смещаются относительно частиц почвы. Основную массу воды и растворов солей молодые корни усваивают в зоне всасывания с помощью корневых волосков. Корневые волоски появляются в виде небольших сосочков - выростов клеток эпиблемы. Рост волоска осуществляется у его верхушки. Оболочка корневого волоска растягивается быстро. По-прошествии определенного времени корневой волосок отмирает. Продолжительность его жизни не превышает 10-20 дней. Количество корневых волосков иногда весьма значительно. В одном из исследований сообщалось, что у четырехмесячного растения риса примерно 14 млрд. корневых волосков с суммарной длиной более 10000 км и площадью поглощения 40 кв. м.

 

Лист – один из основных вегетативных органов высших растений, занимающий боковое положение на стебле.

Лист закладывается в основании апекса побега в виде бокового выступа – листового бугорка, затем превращающегося в листовой примордий. С этого момента начинается внутрипочечная фаза его развития. Дальнейшее развитие листового примордия у разных типов листьев происходит неодинаково. Так, у части листьев в основании примордия закладываются прилистники. У простых цельнокрайних листьев примордий вытягивается и превращается в ось листа – в дальнейшем срединную жилку, по бокам которой в результате краевого роста формируется пластинка У вырезных и сложных листьев боковые элементы развиваются из бугорков, возникающих в определенной последовательности на оси листа. Во время роста примордия в нем дифференцируется поводящая система. Черешок развивается позднее других частей листа.

С момента развертывания почки начинается внепочечная фаза развития листа. Поверхность листьев при этом увеличивается во много десятков, сотен и даже тысяч раз. У листьев двудольных это происходит за счет почти равномерного поверхностного роста. Он достигается отчасти за счет деления большинства клеток листа, но более того и растяжения их в длину и ширину.

Достигнув окончательных размеров, зеленые ассимилирующие листья живут различное время, что зависит от генетических и климатических факторов. У листопадных деревьев и кустарников умеренного климата, а также у многолетних трав внепочечный период жизни листьев составляет всего 4-5 месяцев. От 2 до 5 лет живут листья у ряда так называемых вечнозеленых растений субтропиков и тропиков, а также у некоторых растений тайги. У части хвойных продолжительность жизни листа достигает 15-20 лет. Однако в большинстве случаев она значительно меньше продолжительности жизни осевых органов растения.

Вечнозеленость растений определяется не продолжительностью жизни отдельных листьев. Обязательное условие вечнозелености – развитие новых листьев тогда, когда еще не опали старые.

Активный фотосинтез ведет к довольно быстрому старению листьев и в конце концов к их отмиранию. Интенсивность фотосинтеза и дыхания в стареющем листе постепенно снижается. Снижается в тканях листа и содержание белкового азота и РНК. Видимый признак старения листа – покраснение или пожелтение, связанное с деградацией хлоропластов и разрушением хлорофилла. Массовое падение листьев получило название листопада. У вечнозеленых растений массовый листопад приурочен к началу интенсивного роста новых побегов и почек.

В процессе старения листьев у листопадных деревьев и кустарников близ основания листьев закладываются клетки так называемого отделительного слоя. Он состоит из легко расслаивающейся паренхимы. По этому слою листья отделяются, оставляя на месте отделения листовой рубец, который прикрывается слоем пробки.

Информация о работе Контрольная работа по «Ботаника»