Ядро. ДНК. РНК

Автор работы: Пользователь скрыл имя, 31 Марта 2011 в 20:45, реферат

Описание работы

Форма и размеры ядра клетки очень изменчивы и зависят от вида организма, а также от типа, возраста и функционального состояния клетки. Ядро может быть шаровидным (5—20 мкм в диаметре), линзовидным, веретеновидным и даже многолопастным (в клетках паутинных желез некоторых насекомых и пауков).

Файлы: 1 файл

Ядро.doc

— 98.00 Кб (Скачать файл)

Ядро  

Большинство клеток имеют одно ядро, изредка встречаются  двухъадерные (клетки печени) и многоядерные (многие водоросли, грибы, млечные сосуды растений, поперечнополосатые мышцы). Некоторые клетки в зрелом состоянии  не имеют ядра (например, эритроциты млекопитающих и клетки ситовидных трубок у цветковых растений).  

Форма и размеры  ядра клетки очень изменчивы и  зависят от вида организма, а также  от типа, возраста и функционального  состояния клетки. Ядро может быть шаровидным (5—20 мкм в диаметре), линзовидным, веретеновидным и даже многолопастным (в клетках паутинных желез некоторых насекомых и пауков).  

Общий план строения ядра одинаков у всех клеток эукариот (рис. 1.16). Клеточное ядро состоит  из ядерной оболочки, ядерного матрикса (нуклеоплазмы), хроматина и ядрышка (одного или нескольких).  

  

Рис. 1.16. Схема  строения ядра: 1 — ядрышко; 2 — хроматин; 3 — внутренняя ядерная мембрана; 4 — внешняя ядерная мембрана; 5 — поры в ядерной оболочке; 6—рибосомы; 7—шероховатый эндоплаз-матический ретикулум.  

От цитоплазмы содержимое ядра отделено двойной мембраной, или так называемой ядерной оболочкой. Наружная мембрана в некоторых местах переходит в каналы эндоплазм  этического ретикулума; к ней прикреплены  рибосомы. Внутренняя мембрана рибосом  не содержит. Ядерная оболочка пронизана множеством пор диаметром около 90 нм.  

Содержимое ядра представляет собой гелеобразны  матрикс, называемый ядерным матриксом (нуклеоплазмой), в котором располагаются  хроматин и одно или несколько  ядрышек. Ядерный метрике содержит примембранные и межхроматиновые белки, белки-ферменты, РНК, участки ДНК, атакже различные ионы и нуклеотиды.  

Хроматин на окрашенных препаратах клетки представляет собой сеть тонких тяжей (фибрилл), мелких гранул или глыбок. Основу хроматина  составляют нуклеопротеины — длинные нитевидные молекулы ДНК (около 40%), соединенные со специфическими белками — гистонами (40%). В состав хроматина входят также РНК, кислые белки, липиды и минеральные вещества (ионы Са2- и Mg2+), а также фермент ДНК-пол и мераза, необходимый для репликации ДНК. В процессе деления ядра нуклеопротеины спирализуются, укорачиваются, в результате уплотняются и формируются в компактные палочковидные хромосомы, которые становятся заметны при наблюдении в световой микроскоп.  

У каждой хромосомы имеется первичная перетяжка — центромера (утонченный неспирализованный участок), которая делит хромосому на два плеча (рис. 1.17). В области первичной перетяжки располагается фибриллярное тельце — кинетохор, который регулирует движение хромосом при клеточном делении: к нему прикрепляются нити веретена деления, разводящие хромосомы к полюсам.  

  

Рис. 1.17. Основные виды хромосом: 1 — одноплечая; 2 —  неравноплечая; 3 —- равноплечая.  

В зависимости  от расположения перетяжки выделяют три основных вида хромосом: 1) равноплечие — с плечами равной длины; 2) неравноплечие — с плечами неравной длины; 3) одноплечие (палочковидные) — с одним длинным и другим очень коротким, едва заметным плечом (см. рис. 1.17).  

Каждой клетке того или иного вида живых организмов свойственны определенные число, размеры и форма хромосом. Совокупность хромосом соматической клетки, типичную для данной систематической группы грибов, животных или растений, называют хромосомным набором или кариотипом.  

Число хромосом в зрелых половых клетках называют гаплоидным набором и обозначают буквой л. Соматические клетки содержат двойное число хромосом (диплоидный набор), обозначаемое как 2я. Клетки, имеющие более двух наборов хромосом, являются полиплоидными (4n, 8n и т. д.). Парные хромосомы, т. е. одинаковые по форме, структуре и размерам, но имеющие разное происхождение (одна материнская, другая отцовская), называются гомологичными.  

Количество хромосом в кариотипе не связано с уровнем  организации живых организмов; примитивные  формы Moгут иметь большее число хромосом, чем высокоорганизованные, и наоборот. Например, клетки радиолярий (морских простейших) содержат 1 000—1 600 хромосом, а клетки шимпанзе — всего 48. Однако следует помнить, что все организмы одного вида имеют одинаковое количество хромосом, т. е. для них характерна видовая специфичность кариотипа. В клетках человека диплоидный набор составляет 46 хромосом, клетках пшеницы мягкой — 42, картофеля — 18, мухи домашней — 12, плодовой мушки дрозофилы — 8. Правда, клетки разных тканей даже одного организма в зависимости от выполняемой функции могут иногда содержать разное число хромосом. Так, в клетках печени животных бывает разное число наборов хромосом (4л, 8ч). По этой причине понятия мкариотип» и «хромосомный набор» не совсем идентичны.  

Некоторые хромосомы  имеют вторичную перетяжку, не связанную  с прикреплением нитей веретена. Этот участок хромосомы контролирует синтез ядрышка (ядрышковый организатор).  
 
 
 
 
 

Ядрышки

Ядрышки — это  округлые, сильно уплотненные, не ограниченные мембраной участки клеточного ядра диаметром 1—2 мкм и более. Форма, размеры и количество ядрышек зависят от функционального состояния ядра: чем крупнее ядрышко, тем выше его активность.  

В состав ядрышек  входит около 80% белка, 10—15% РНК, 2— 12% ДНК. Во время деления ядра ядрышки разрушаются. В конце деления клетки ядрышки вновь формируются вокруг определенных участков хромосом, называемых ядрышковьши организаторами. В ядрышковых организаторах локализованы гены рибо-сомной РНК. Здесь происходит синтез рибосомных РНК, объединение их с белками, что ведет к образованию субъединиц рибосом. Последние через поры в ядерной оболочке переходят в цитоплазму. Таким образом, ядрышко представляет собой место синтеза рРНК и самосборки рибосом. 
 
 

Микрофотография ядрышка 

Ядрышко- хромосомные участки, определяющие синтез рРНК и образование клеточных рибосом. В растущих ооцитах неск сот ядрышек - амплификация ядрышек. Ядрышки отсутствуют в клетках дробящихся яиц и в дифф. кл - клетки крови

Число ядрышек  зависит от числа ядрышковых организаторов - участки, на кот в телофазе происх образование ядрышек интерфазного ядра - образуют вторичные перетяжки х-м. У человека яо расп в коротких плечах 13, 14, 15, 21 и 22 хромосом (10 на диплоидный набор). 82). У кошки - 2; у свиньи - 2; у мыши - 4; у коровы - 8. У хладнокр. позвоночных и птиц обычно 1пара яо х-м

Локализация яо определяется на митотических х-мах  окраской солями серебра, связ с яо белками, более точно определение  яо методом FISH. Ядрышки могут сливаться  др с другом.

Множественность рибосомных генов

при разрыве  х-мы на месте вторичной перетяжки  ядрышки могут

возникать на каждом из фрагментов х-м – множество  копий рибосомных генов - полицистроны - умеренные повторы. У E. coli 6-7 рассеянных по геному идентичных оперонов рРНК- ~1% всей ДНК. Число генов рРНК постоянно в клетке 

Амплифицированные ядрышки - гены рРНК мб избыточно реплицированы. При этом дополнительная репликация генов рРНК происходит в целях  обеспечения продукции большого количества рибосом. В результате такого сверхсинтеза генов рРНК их копии могут становиться свободными, экстрахромосомными. Эти внехромосомные копии генов рРНК могут функционировать независимо, в результате чего возникает масса свободных дополнительных ядрышек, но уже не связанных структурно с ядрышкообразующими хромосомами. Это явление получило название амплификации генов рРНК. подробно изучено на растущих ооцитах амфибий.

У X. laevis амплификация рДНК, происходит в профазеI. В этом случае количество амплифицированной  рДНК (или генов рРНК) становится в 3000 раз больше того, что приходится

на гаплоидное количество рДНК, и соответствует 1,5х106 генов рРНК. Эти сверхчисленные внехромосомные копии и образуют сотни дополнительных ядрышек в растущих ооцитах. В  среднем же на одно дополнительное ядрышко приходится несколько сот или тысяч генов рРНК.

Амплифицированные ядрышки встречаются также в  ооцитах насекомых. У окаймленного плавунца в ооцитах обнаружено 3х106 экстрахромосомных копий генов  рРНК.

После периода  созревания ооцита при его двух последовательных делениях дополнит ядрышки в состав митотических хромосом не входят, они отделяются от новых ядер и деградируют.

У Tetrachymena pyriformis в гаплоидном геноме микронуклеуса  единственный ген рРНК. В макронуклеусе ~200 копий.

У дрожжей экстрахромосомные  копии генов рРНК - циклические ДНК l~3 мкм, сод один ген рРНК.  

СТРУКТУРА ЯДРЫШКА 

В ядрышке различают  гранулярный компанент (гк) и фибриллярный компанент (фк).

Гранулярный компанент  представляет собой

гранулы 15-20 нм, обычно расположенные на периферии  ядрышка, хотя гк и фк могут быть распределены равномерно.

Фк и гк способны образовывать нитчатые структуры - нуклеолонемы - ядрышковые нити ~100-200 нм, которые могут  образовывать отдельные сгущения.

Фибриллярный  компанент - представляет собой тонкие (3-5 нм) фибриллы - диффузная часть ядрышек, в центре ядрышка – 1 или 3-5 отдельных зон: фибриллярные центры - частки скопления фибрилл с низкой е лотностью, окруженные зоной фибрилл высокой е плотности - плотный фибриллярный компонент

хроматин –  примыкает или окружает ядрышко. 30нм фибриллы хроматина по периферии ядрышка могут заходить в лакуны, м-у нуклеолонемными участками.

белковый сетчатый матрикс –  

метод регрессивного  окрашивания нк - ионы уранила, связанные  с ДНК легко вымываются хелатоном  ЭДТА, чем с РНК?окрашенные структуры сод РНК: гранулы (сильно), пфк (слабее), хроматин (не окрашен) 

импульсное мечение (3H-уридин), первые следы мечения  обнаруживались сначала (через 1-15 мин) в пфк, а затем (до 30 мин) меченым  оказывался гк. в фц метка не обнаруживалась?45S пре-рРНК синтезируется в области пфк, а гранулярный компонент ядрышка соответствует прерибосомным частицам (55S-, 40S РНП).

окрашивание осмий-амином, ДНКазы, меченной золотом, связыванием  меченого актиномицина, прямой молекулярной гибридизацией с меченой рДНК - что в составе фибриллярных центров находится ДНК, ответственная за синтез рРНК. Зоны фибриллярных центров отличаются от остального хроматина тем, что состоят из тонких хроматиновых фибрилл, значительно обедненных гистоном H1 (что показано с помощью меченных коллоидным золотом антител). 

фц: неактивные рибосомные гены, спейсерные участки.

Транскрипция  пре-рРНК происходит по периферии фц, где пфк и представляет собой 45S пре-рРНК, располагающиеся в виде “елочек” на деконденсированных участках рДНК После завершения

транскрипции 45S РНК теряет связь с транскрипционной единицей на ДНК в зоне плотного фибриллярного компонента, каким-то еще непонятным образом переходит  в гранулярную зону, где и происходит процессинг рРНК, образование и созревание рибосомных субъединиц. 
 

Фибриллярный  центр и ядрышковый организатор 

Строение и  химические характеристики ФЦ оказались  практически одинаковыми с таковыми ядрышковых организаторов митотических хромосом. И те и другие построены  из тесно ассоциированных фибрилл, толщиной 6-10 нм; и те и другие обладают характерной особенностью - окрашиваться солями серебра, что зависит от наличия особых ядрышковых белков, содержат РНК-полимеразу I.

число ФЦ в интерфазных  ядрышках, не соответствует числу  ядрышковых организаторов в митозе. Так в клетках культуры СПЭВ число ФЦ может быть в 2-4 раза выше, чем число ядрышковых организаторов .

Более того, количество ФЦ возрастает по мере увеличения плоидности клетки (G2, 4n) и транскрипционной ее активности.

При этом уменьшается  величина каждого отдельного фибриллярного центра. Однако суммарные объемы ФЦ при пересчете на гаплоидный хромосомный набор остаются постоянными в интерфазе, но превышают это число вдвое по сравнению метафазой. Другими словами при активации синтеза рРНК наблюдается такое изменение числа ФЦ и их размеров, которое может говорить о какой-то фрагментации исходных ФЦ в относительно мало активных ядрышках.

Противоположная картина наблюдается при затухании  синтетических процессов в дифференцирующихся клетках эритроидного ряда мышей (табл. 12). При этом видно, что в размножающихся и активно синтезирующих гемоглобин проэритробластах количество фибриллярных центров зависит от плоидности клетки (88 в G1-фазе, 118 в G2-фазе клеточного цикла), размер индивидуальных ФЦ изменяется мало. После прекращения размножения этих клеток и падении их синтетической активности резко меняются параметры ядрышка. Их объем, уже начиная со стадии базофильного эритробласта

уменьшается в 4-5 раз, а на конечной стадии дифференцировки (нормобласт) - в сотню раз. При этом резко падает число ФЦ (10-40 раз) и возрастает объем почти в 10 раз величины отдельного фибриллярного центра.

Информация о работе Ядро. ДНК. РНК