Автор работы: Пользователь скрыл имя, 31 Января 2013 в 12:46, реферат
Клетка элементарная живая система, способная к самостоятельному существованию, самовоспроизведению и развитию; основа строения и жизнедеятельности всех животных и растений. К. существуют и как самостоятельные организмы, и в составе многоклеточных организмов (тканевые клетки). Термин «клетка» предложен английским микроскопистом Р. Гуком (1665). Клетка — предмет изучения особого раздела биологии — цитологии. Систематическое изучение клетки началось лишь в 19 в. Одним из крупнейших научных обобщений того времени была Клеточная теория, утверждавшая единство строения всей живой природы. Изучение жизни на клеточном уровне лежит в основе современных биологических исследований.
1. Клетка как генетическая система
2. Строение состав и типы
3. Понятия кариотип, диплоидный, гаплоидный набор хромосом,
аутосомы и половые хромосомы
Содержание
1. Клетка как генетическая система
2. Строение состав и типы
3. Понятия кариотип, диплоидный, гаплоидный набор хромосом,
аутосомы и половые хромосомы
1. Клетка как генетическая система
Клетка элементарная живая система, способная к самостоятельному существованию, самовоспроизведению и развитию; основа строения и жизнедеятельности всех животных и растений. К. существуют и как самостоятельные организмы, и в составе многоклеточных организмов (тканевые клетки). Термин «клетка» предложен английским микроскопистом Р. Гуком (1665). Клетка — предмет изучения особого раздела биологии — цитологии. Систематическое изучение клетки началось лишь в 19 в. Одним из крупнейших научных обобщений того времени была Клеточная теория, утверждавшая единство строения всей живой природы. Изучение жизни на клеточном уровне лежит в основе современных биологических исследований.
В строении и функциях каждой клетки обнаруживаются признаки, общие для всех клетки, что отражает единство их происхождения из первичных органических комплексов. Частные особенности различных клеток — результат их специализации в процессе эволюции. Так, все клетки сходно регулируют обмен веществ, удваивают и используют свой наследственный материал, получают и утилизируют энергию. В то же время разные одноклеточные организмы (амёбы, инфузории и т.д.) сильно различаются размерами, формой, поведением. Не менее резко различаются клетки многоклеточных организмов. Так, у человека имеются лимфоидные клетки — небольшие (диаметром около 10 мкм) округлые клетки, участвующие в иммунологических реакциях, и нервные клетки, часть которых имеет отростки длиной более метра; эти К. осуществляют основные регуляторные функции в организме.
Методы исследования. Первым цитологическим методом была микроскопия живых клетки Современные варианты прижизненной (витальной) световой микроскопии — фазово-контрастная, люминесцентная, интерференционная и др. — позволяют изучать форму клетки и общее строение некоторых её структур, движение клетки и их деление. Детали строения клетки обнаруживаются лишь после специального контрастирования, что достигается окраской убитой клетки. Новый этап изучения структуры клетки — электронная микроскопия, дающая значительно большее разрешение структур клетки по сравнению со световой микроскопией. Химический состав клетки изучается цито- и гистохимическими методами, позволяющими выяснить локализацию и концентрацию веществ в клеточных структурах, интенсивность синтеза веществ и их перемещение в клетки. Цитофизиологические методы позволяют изучать функции клетки, например возбуждение, секрецию.
Общие свойства клеток. В каждой клетке различают две основные части — Ядро и цитоплазму, в которых, в свою очередь, можно выделить структуры, различающиеся по форме, размерам, внутреннему строению, химическим свойствам и функциям. Одни из них — так называемые органоиды — жизненно необходимы клетке и обнаруживаются во всех клетках. Другие — продукты активности клетки, представляющие временные образования. В специализированных структурах осуществляется разделение различных биохимических функций, что способствует осуществлению в одной и той же клетке разнородных процессов, включающих синтез и распад многих веществ.
В ядерных органоидах — хромосомах, в их основном компоненте — ДНК, хранится генетическая информация о строении белков, свойственных организму определённого вида. Другое важнейшее свойство ДНК — способность к самовоспроизведению, что обеспечивает как стабильность наследственной информации, так и её непрерывность — передачу следующим поколениям. На ограниченных участках ДНК, охватывающих несколько генов, как на матрицах, синтезируются рибонуклеиновые кислоты — непосредственные участники синтеза белка. Перенос (Транскрипция) кода ДНК происходит при синтезе информационных РНК (и-РНК). Синтез белка представляется как считывание информации с матрицы РНК. В этом процессе, называемом трансляцией, принимают участие транспортные РНК (т-РНК) и специальные органоиды — Рибосомы, образующиеся в ядрышке. Размеры ядрышка определяются главным образом потребностью клетки в рибосомах; поэтому особенно велико оно в клетке, интенсивно синтезирующих белок. Синтез белка — конечный итог реализации функций хромосом — осуществляется главным образом в цитоплазме. Белки — ферменты, детали структур и регуляторы разных процессов, включая и транскрипцию — определяют в конечном счёте все стороны жизни клетки, позволяя клетке сохранять свою индивидуальность, несмотря на постоянно меняющееся окружение. Если в бактериальной клетке синтезируется около 1000 разных белков, то почти в каждой из клеток человека — свыше 10000. Таким образом, разнообразие внутриклеточных процессов в ходе эволюции организмов существенно возрастает. Оболочка ядра, отделяющая его содержимое от цитоплазмы, состоит из двух мембран, пронизанных порами — специализированных участков для транспорта некоторых соединений из ядра в цитоплазму и обратно. Другие вещества проходят через мембраны путём диффузии или активного транспорта, требующего затрат энергии. Многие процессы происходят в цитоплазме клетки при участии мембран эндоплазматической сети — основной синтезирующей системы клетки, а также Гольджи комплекса и митохондрий. Отличия мембран разных органоидов определяются свойствами образующих их белков и липидов. Клеткам некоторым мембранам эндоплазматической сети прикреплены рибосомы; здесь происходит интенсивный синтез белка. Такая гранулярная эндоплазматическая сеть особенно развита в клетке, секретирующих или интенсивно обновляющих белок, например у человека в клетке печени, поджелудочной железы, нервных клеткок. В состав других биологических мембран, лишённых рибосом (гладкоконтурная сеть), входят ферменты, участвующие в синтезе углеводно-белковых и липидных комплексов. В каналах эндоплазматической сети могут временно накапливаться продукты деятельности; в некоторых клетках по каналам происходит направленный транспорт веществ. Перед выведением из К. вещества концентрируются в пластинчатом комплексе (комплексе Гольджи).
Клетки растений. Поверх плазматической мембраны растительные клетки покрыты, как правило, твёрдой внешней оболочкой (она может отсутствовать лишь у половых клеток), состоящей у большинства растений главным образом из полисахаридов: целлюлозы, пектиновых веществ и гемицеллюлоз, а у грибов и некоторых водорослей — из хитина. Оболочки снабжены порами, через которые с помощью выростов цитоплазмы соседние клеток связаны друг с другом. Состав и строение оболочки меняются по мере роста и развития клеток. Часто у клетки, прекративших рост, оболочка пропитывается лигнином, кремнезёмом или др. веществом, которое делает её более прочной. Оболочки ее определяют механические свойства растения. Клетки некоторых растительных тканей отличаются особенно толстыми и прочными стенками, сохраняющими свои скелетные функции после гибели клетки. Дифференцированные растительные клетки имеют несколько вакуолей или одну центральную вакуоль, занимающую обычно большую часть объёма клетки. Содержимое вакуолей — раствор различных солей, углеводов, органических кислот, алкалоидов, аминокислот, белков, а также запас воды. В вакуолях могут откладываться питательные вещества. В цитоплазме растительной К. имеются специальные органоиды — Пластиды; лейкопласты (в них часто откладывается крахмал), хлоропласты (содержат преимущественно хлорофилл и осуществляют Фотосинтез) и хромопласты (содержат пигменты из группы каротиноидов). Пластиды, как и митохондрии, способны к самовоспроизведению. Комплекс Гольджи в растительной К. представлен рассеянными по цитоплазме диктиосомами.
2. Строение состав и типы
Основной единицей живого является клетка. Она имеет все свойства живого, то есть, способна размножаться, видоизменяться и реагировать на раздражения. Более мелкие единицы материи этих свойств не проявляют. Р. Вирхов писал: «Клетка есть последний морфологический элемент всех живых тел, и мы не имеем права искать настоящей жизнедеятельности вне нее»
Среди живых организмов встречаются два типа организации клеток: прокариотическая клетка (у прокариот — бактерий и синезеленых водорослей) и зукариотическая клетка (у эукариот, то есть всех остальных одно- и многоклеточных организмов— растений, грибов и животных).
Прокариотическая клетка покрыта цитоплазматической мембраной, играющей роль активного барьера между цитоплазмой клетки и внешней средой. Снаружи от мембраны расположена клеточная стенка. У прокариотическх клеток нет морфологически выраженного ядра, но имеется зона, заполненная ДНК, несущей наследственную информацию. В основном веществе цитоплазмы прокариотических клеток располагаются многочисленные рибосомы.
Бактерии размножаются путем простого деления. Находящаяся в ядерной области ДНК прикреплена к мезосоме— структуре, образуемой цитоплазматической мембраной. Деление бактериальной клетки начинается с деления мезосомы; затем две половинки мезосомы расходятся, увлекая за собой ДНК, последняя также делится на две части, из которых впоследствии образуются ядерные области двух дочерних клеток.
Клетка эукариот организована сложнее, чем прокариотическая. Она покрыта цитоплазматической мембраной, которая играет важную роль в регулировании состава клеточного содержимого, так как через нее проникают все питательные вещества и продукты секреции. Каждая клетка содержит небольшое шаровидное или овальное тельце, называемое ядром. Схема строения эукариотической клетки Ядро служит важным регулирующим центром клетки, оно содержит наследственные факторы (гены), определяющие ври знаки данного организма, и управляет многими внутриклеточными процессами
Оболочка, окружающая ядро и отделяющая его от цитоплазмы, ядерная мембрана — регулирует движение веществ из ядра и в ядро. В полужидком основном веществе ядра-кариоплазме размещается строго определенное число вытянутых нитевидных образований, называемых хромосомами. На окрашенном срезе неделящейся клетки хромосомы обычно имеют вид неправильной сети из темных тяжей и зернышек, в совокупности называемых хроматином.
В ядре находится сферическое
тельце, называемое ядрышком. Ядрышки
исчезают, когда клетка готовится
к делению, а затем появляются
вновь; они, по-видимому, участвуют в
синтезе рибонуклеиновых
Материал, находящийся внутри плазматической мембраны, но вне ядра, называется цитоплазмой.
При исследовании тонкого среза
клетки в электронном микроскопе
видно, что цитоплазма представляет
собой чрезвычайно сложный
Все живые клетки содержат митохондрии — тельца величиной О,2—5 мкм, форма которых варьирует от сферической до палочковидной и нитевидной. В одной клетке может быть от нескольких митохондрий до тысячи и более. Обычно они сосредоточены в той части клетки, где обмен веществ наиболее интенсивен.
Каждая митохондрия ограничена двойной мембраной; внешний слой мембраны образует гладкую наружную поверхность, а от внутреннего слоя отходят многочисленные складки в виде параллельных, направленных к центру митохондрии выступов, которые могут встречаться, а иногда и сливаться со складками, отходящими от противоположной стороны Внутренние складки, называемые кристами, содержат ферменты, участвующие в системе переноса электронов, которая играет важнейшую роль в превращении энергии питательных веществ в биологически полезную энергию, необходимую для осуществления клеточных функций. Полужидкое внутреннее содержимое митохоидрии — матрикс — содержит ферменты. Митохондрии, главная функция которых состоит в вырабатывании энергии, образно называют электростанциями клетки.
В клетках большинства растений
имеются пластиды—
В клетках животных и некоторых низших растений около ядра расположены два небольших тельца — центриоли, Которые играют важную роль в клеточном делении: в начале деления они отходят друг от друга, направляясь к противоположным полюсам клетки, и между ними образуется так называёмое веретено деления.
Комплекс Гольджи — компонент цитоплазмы, встречающийся почти во всех клетках, кроме зрелых спермиев и красных кровяных телец,—представляет собой неупорядоченную сеть канальцев, выстланных мембранами. Обычно он расположеноколо ядра и окружает центриоли. Функция комплекса еще невполне выяснена, но, по мнению некоторых цитологов, комплекс Гольджи служит местом временного хранения веществ, вырабатываемых на гранулярной эндоплазматической сети, а канальцы комплекса соединены с плазматической мембраной. Лизосомы— группа внутриклеточных органелл, встречающихся в животных клетках, — сходны по величине с митохонд-риями, но несколько менее плотные; они представляют собойограниченные мембраной тельца, которые содержат разнообразные ферменты, способные гидролизовать макромолекулярные компоненты клетки. В случае проникновения в клетку чужеродной ДНК (вируса) лизосомы выделяют в цитоплазму ферменты, расщепляющие ДНК,—нуклеазы, и тем самым выполняют защитную функцию.
Кроме перечисленных элементов, цитоплазма может содержать вакуоли— полости, заполненные жидкостью и отделенные от остальной цитоплазмы вакуолярной мембраной. Вакуоли весьма обычны в клетках растений и низших животных, но редко встречаются в клетках высших животных процессами.
Ядро является важнейшей составной частью клетки. В период между делениями ядро отделено от цитоплазмы ядерной оболочкой и чаще всего имеет шаровидную или эллиптическую форму. Полость ядра заполнена ядерным соком (кариоплазмой),0 вязкости которого отличают вязкость цитоплазмы и часто бывает значительно ниже. Ядро не обладает способностью восстанавливать ядерную оболочку, поэтому при ее повреждении содержимое ядра смешивается с цитоплазмой.