Шпаргалка по "Биологии"

Автор работы: Пользователь скрыл имя, 14 Мая 2013 в 22:13, шпаргалка

Описание работы

Работа содержит ответы на вопросы по дисциплине "Биология".

Файлы: 1 файл

Билеты по биологии.docx

— 148.23 Кб (Скачать файл)

Билет № 1

  1. История развития цитологии.  Клеточная теория

Ответ: Цитоло́гия (греч. κύτος — «вместилище», здесь: «клетка» и λόγος — «учение», «наука») — раздел биологии, изучающий живые клетки, их органоиды, их строение, функционирование, процессы клеточного размножения, старения и смерти.

 

Термин «клетка» впервые  употребил Роберт Гук в 1665 году, при описании своих «исследований строения пробки с помощью увеличительных линз». В 1674 году Антони ван Левенгук установил, что вещество, находящееся внутри клетки, определенным образом организовано. Он первым обнаружил клеточные ядра. На этом уровне представление о клетке просуществовало еще более 100 лет.

Изучение клетки ускорилось в 1830-х годах, когда появились  усовершенствованные микроскопы. В 1838—1839 ботаник Маттиас Шлейден и анатом Теодор Шванн практически одновременно выдвинули идею клеточного строения организма. Т. Шванн предложил термин «клеточная теория» и представил эту теорию научному сообществу. Возникновение цитологии тесно связано с созданием клеточной теории — самого широкого и фундаментального из всех биологических обобщений. Согласно клеточной теории, все растения и животные состоят из сходных единиц — клеток, каждая из которых обладает всеми свойствами живого.

Важнейшим дополнением клеточной  теории явилось утверждение знаменитого  немецкого натуралиста Рудольфа Вирхова, что каждая клетка образуется в результате деления другой клетки.

В 1870-х годах были открыты  два способа деления клетки эукариот, впоследствии названные митоз и мейоз. Уже через 10 лет после этого удалось установить главные для генетики особенности этих типов деления. Было установлено, что перед митозом происходит удвоение хромосом и их равномерное распределение между дочерними клетками, так что в дочерних клетках сохраняется прежнее число хромосом. Перед мейозом число хромосом также удваивается, но в первом (редукционном) делении к полюсам клетки расходятся двухроматидные хромосомы, так что формируются клетки с гаплоидным набором, число хромосом в них в два раза меньше, чем в материнской клетке. Было установлено, что число, форма и размеры хромосом — кариотип — одинаково во всех соматических клетках животных данного вида, а число хромосом в гаметах в два раза меньше. Впоследствии эти цитолоогические открытия легли в основу хромосомной теории наследственности.

2 . Энергетический  обмен клетки или дыхание организма.

Ответ:  Катаболи́зм (от греч. καταβολή, «основание, основа») или энергетический обмен — процесс метаболического распада, разложения на более простые вещества илиокисления какого-либо вещества, обычно протекающий с высвобождением энергии в виде тепла и в виде АТФ. Катаболические реакции лежат в основе диссимиляции: утраты сложными веществами своей специфичности для данного организма в результате распада до более простых.

Примерами катаболизма являются превращение этанола через стадии ацетальдегида (этаналя) и уксусной кислоты (этановой кислоты) в углекислый газ и воду, или процесс гликолиза — превращение глюкозы в молочную кислоту либо пировиноградную кислоту и далее уже в дыхательном цикле — опять-таки в углекислый газ и воду.

Интенсивность катаболических процессов и преобладание тех или иных катаболических процессов в качестве источников энергии в клетках регулируется гормонами. Например, глюкокортикоиды повышают интенсивность катаболизма белков и аминокислот, одновременно тормозя катаболизм глюкозы (гипогликемия), а инсулин, напротив, ускоряет катаболизм глюкозы и тормозит катаболизм белков.

Катаболизм является противоположностью анаболизма — процессу синтеза или ресинтеза новых, более сложных, соединений из более простых, протекающему с расходованием, затратой энергии АТФ. Соотношение катаболических и анаболических процессов в клетке опять-таки регулируется гормонами. Например, адреналин или глюкокортикоиды сдвигают баланс обмена веществ в клетке в сторону преобладания катаболизма, а инсулин, соматотропин, тестостерон — в сторону преобладания анаболизма.

3 . Почему 21 век называют  «веком биологии»?

………………………………………………………………………………………………………..

 

БИЛЕТ № 2

    1. Методы изучения клетки

Ответ: Для изучения клеток используют микроскопическую технику 
в виде световой, фазово-контрастной, ультрафиолетовой, люминесцентной и 
электронной микроскопии. Последняя используется в сочетании с техникой 
ультратонких срезов. С целью получения трехмерных изображений клеток используют 
сканирующие электронные микроскопы. Для документации поведения живых клеток 
используют замедленную киносъемку.

 

В цитологических исследованиях  очень эффективны 
цитохи-мические методы, основанные на том, что определенные реактивы (краски) 
избирательно окрашивают химические вещества цитоплазмы, а также 
ауторадиография, которая заключается во введении в клетки радиоактивных 
изотопов фосфора (32Р), углерода (14С) и водорода (3H) с последующим обнаружением их 
клеточной локализации с помощью фотоэмульсий.

    1. Обмен веществ в клетке

Ответ: Совокупность химических реакций, происходящих в организме, называется обменом веществ нли метаболизмом.В зависимости от общей направленности процессов выделяют катаболизм и анаболизм.

Катаболизм (диссимиляция) —совокупность реакций, приводящих к образованию простых соединений из более сложных. К катаболическим относят, например, реакции гидролиза полимеров до мономеров и расщепление последних до углекислого газа, воды, аммиака, т. е. реакции энергетического обмена, в ходе которого происходит окисление органических веществ и синтез АТФ.

Анаболизм (ассимиляция) — совокупность реакций синтеза сложных органических веществ из более простых. Сюда можно отнести, например, фиксацию азота и биосинтез белка, синтез углеводов из углекислого газа и воды в ходе фотосинтеза, синтез полисахаридов, липидов, нуклеотидов, ДНК, РНК и других веществ.

Синтез веществ  в клетках живых организмов часто  обозначают понятием пластический обмеи, а расщепление веществ и их окисление, сопровождающееся синтезом АТФ, —энергетическим обменом. Оба вида обмена составляют основу жизнедеятельности любой клетки, а следовательно, и любого организма и тесно связаны между собой. С одной стороны, все реакции пластического обмена нуждаются в затрате энергии. С другой стороны, для осуществления реакций энергетического обмена необходим постоянный синтез ферментов, так как продолжительность их жизни невелика.

    1. Предупреждение и лечение некоторых наследственных заболеваний.

Ответ:  Частота хромосомных мутаций у человека велика и является причиной нарушений (до 40 %) у новорожденных. Кроме упоминавшихся хромосомных болезней существует множество других, обычно приводящих к тяжелым последствиям, а чаще – к гибели эмбриона. В большинстве случаев хромосомные мутации возникают в гаметах родителей заново, реже они существуют у одного из родителей и передаются потомкам. 
 
Химические мутагены и ионизирующие излучения, при существенном повышении концентраций и доз вызывают возрастание частоты появления хромосомных мутаций. Спонтанные генные мутации происходят гораздо реже. Вероятность мутации в конкретном гене может колебаться около 10–5, в среднем на диплоидный геном приходится около двух новых мутаций. Однако далеко не все мутации вредны в гетерозиготном состоянии, они могут накапливаться и популяциях человека. Позднее, переходя в гомозиготное состояние, многие мутации могут приводить к возникновению тяжелых наследственных болезней.

 

 

БИЛЕТ № 3

    1. Атомный и молекулярный состав клетки.

Ответ:  На долю четырех химических элементов – С, O, H и N – приходится около 98% веса организма. Из этих элементов состоят все органические соединения, поэтому их называют

органогенами. Остальные элементы, составляющие организм, подразделяются на

макроэлементы (K, S, P, Cl, Mg, Na, Ca и Fe), которые содержатся в количестве

0.01-0.1 весовых %, и микроэлементы (Zn, Cu, I, F, Mn, B, Br, Co, Mo, Si, Ba, Se, V, Cr, Ni), содержание которых меньше 0,01%.

Например, известно, что в среднем в теле человека (массой 70 кг) на долю кислорода приходиться  – 45 кг; углерода – 12,6; водорода – 7; азота  – 2,1; кальция – 1,4; фосфора 0,7 кг. Калий, сера, натрий, хлор, магний, железо, фтор, кремний в сумме составляют всего лишь 0,7 кг. 

 

    1. Клеточное ядро его биологическая роль.

Ответ:  Ядро — главная часть клетки. Наличие ядра в клетках эукариот. Одноядерные и многоядерные клетки. 
     
     2. Эукариотпы — организмы, имеющие в клетках ядро, отграниченное от цитоплазмы ядерной мембраной (грибы, растения, животные). 
     
     3. Строение ядра: ядерная оболочка, состоящая из двух мембран и имеющая поры; ядерный сок; ядрышки; хромосомы. Роль ядерной мембраны в отграничении содержимого ядра от цитоплазмы. Связь внутреннего содержимого ядра и цитоплазмы посредством пор. Ядрышки — «мастерские» по сборке рибосом. 
     
     4. Хромосомы — структуры, находящиеся в ядре и состоящие из одной молекулы ДНК и соединенных с ней молекул белков. 
     
     5. Набор хромосом в клетках. Соматические клетки — все клетки многоклеточного организма, кроме половых. Диплоидный (двойной) набор хромосом в соматических клетках большинства организмов (2п). Гаплоидный (одинарный) набор хромосом в половых клетках (In). Набор хромосом в соматических (2п = 46) и половых (In = 23) клетках человека. Гомологичные — хромосомы, имеющие одинаковую форму, размеры и определяющие проявление одинаковых признаков (окраску цветков, или форму плодов, или рост организма и др.). Негомологичные — хромосомы, относящиеся к разным парам, различающимся по форме, размерам, и отвечающие за проявление разных признаков (например, окраску и форму семян у гороха). Число, размеры и форма хромосом — главный признак вида. Изменение числа, формы или размера хромосом — причина мутаций. 
     
     6. Строение хромосомы. Хроматиды — две одинаковые нитевидные структуры, состоящие из молекулы ДНК и связанных с ней молекул белков, образующие одну хромосому и соединяющиеся между собой в области первичной перетяжки — центромеры. 
     
     7. Гены — единицы наследственности — участки хромосом, определяющие проявление определенных признаков у организма, например рост, массу тела, окраску шерсти у животных или расцветку цветков у растений и др. Ген — участок молекулы ДНК, содержащий информацию об одной белковой цепи. Содержание в одной молекуле ДНК большого числа (до нескольких тысяч) генов. 
     
     8. Роль ядра: участие в делении клетки, хранение и передача наследственных признаков организма, регуляция процессов жизнедеятельности в клетке.

 

    1. В чем преимущество полового размножения?

Ответ:  Половое. 
Преимущества: 
1. Образуется организм, который имеет схожести и с материнским, и с отцовским организмом. Это может служить как во благо, так и во вред. 
2. Следствие полового размножения - разнообразие видов и их усложнение, а также появление механизмов изоляции видов.

 

 

БИЛЕТ № 4

 

    1. Вода. Биологические свойства воды.

Ответ: Вода играет уникальную роль как вещество, определяющее возможность существования и саму жизнь всех существ на Земле. Она выполняет роль универсальногорастворителя, в котором происходят основные биохимические процессы живых организмов. Уникальность воды состоит в том, что она достаточно хорошо растворяет как органические, так и неорганические вещества, обеспечивая высокую скорость протекания химических реакций и в то же время — достаточную сложность образующихся комплексных соединений. Благодаря водородной связи, вода остаётся жидкой в широком диапазоне температур, причём именно в том, который широко представлен на планете Земля в настоящее время.

Уникальные свойства позволили  воде играть в клетке роль растворителя, терморегулятора, а также поддерживать структуру клеток и осуществлять транспортировку веществ.

 

    1. Немембранные органоиды

Ответ:  К немембранным органоидам эукариотической клетки относятся органоиды, не имеющие собственной замкнутой мембраны, а именно: рибосомы и органоиды, построенные на основе тубулиновых микротрубочек – клеточный центр и органоиды движения (жгутики и реснички).

Органоиды (от орган и др.-греч. εἶδος — вид), или органеллы  — в цитологии постоянные специализированные структуры в клетках животных и растений

Рибосома — важнейший немембранный органоид живой клетки сферической или слегка эллипсоидной формы, диаметром 10—20 нанометров, состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называетсятрансляцией.

Центрио́ль — внутриклеточный органоид эукариотической клетки, представляющий тельца в структуре клетки, размер которых находится на границе разрешающей способности светового микроскопа.

 

    1. Значение  фотосинтеза

Ответ:  Фотосинтез (от др.-греч. φῶς — свет и σύνθεσις — соединение, складывание, связывание, синтез) — процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов(хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий)

Информация о работе Шпаргалка по "Биологии"