Автор работы: Пользователь скрыл имя, 29 Мая 2013 в 04:34, реферат
Генная инженерия - направление исследований в молекулярной биологии и генетике, конечной целью которых является получение с помощью лабораторных приемов организмов с новыми, в том числе и не встречающимися в природе, комбинациями наследственных свойств. В основе генной инженерии лежит обусловленная последними достижениями молекулярной биологии и генетики возможность целенаправленного манипулирования с фрагментами нуклеиновых кислот. К этим достижениям следует отнести установление универсальности генетического кода, то есть факта, что у всех живых организмов включение одних и тех же аминокислот в белковую молекулу кодируются одними и теми же последовательностями нуклеотидов в цепи ДНК; успехи генетической энзимологии, предоставившей в распоряжение исследователя набор ферментов, позволяющих получить в изолированном виде отдельные гены или фрагменты нуклеиновой кислоты, осуществлять in vitro синтез фрагментов нуклеиновых кислот, объединить в единое целое полученные фрагменты.
Введение………………………………………………………………....2
1. Теоретические предпосылки формирования генной инженерии……....3
1.1. Открытие двойной структуры ДНК и матричного синтеза………....3
2. Возможности генной инженерии..............................................................5
3. Области практического применения генной инженерии……………...6
1.1. Создание трансгенных растений…………………………………....6
1.2. Изменение свойств сельскохозяйственных технических растений…..7
1.3.Генетическая модификация пластид……………………………….....8
1.4. Генные вакцины. Актуальность разработки новых вакцин………….8
1.5. Разработка ДНК-вакцин……………………………………………...9
1.6. Генная инженерия человека………………………………………..10
4. Молекулярная генетика наследственных патологий…………………10
4.1. Наследственные болезни – объект обратной генетики……………..12
4.2. Транс- действующие мутации……………………………………...13
5. Проблематика генной инженерии……………………………………...14
5.1. Потенциальная опасность генно–инженерных методов……………14
5.2. Биоэтика. Центральные постулаты биоэтического кодекса………...15
5.3. Реальные опасности генной инженерии…………………………….16
5.4. Этические проблемы генной инженерии……………………………17
5.5. Юридические проблемы генной инженерии………………………...18
Заключение………………………………………………………………..19
Список литературы……………………………………………………......20
3.3. Генетическая модификация пластид.
Во многих случаях генетической модификации будут подвергаться не ядерные геномы, а геномопластит или митохондрия. Такие системы позволяю значительно увеличить содержание продукта в трансгенном материале.
В генной инженерии
исследуются следующие
Управляемая активность генов;
Селективная экспрессия трансгена в определенных тканях;
Система экспрессии растения в чужеродной генетической информации, опосредованной вирусами.
Разработанная усилиями компании “Biosource” (США) технология позволяет быстро и в больших количествах нарабатывать в растениях белки и небольшие молекулы за счет инфицирования растений генетически модифицированными вирусами, со встроенными чужеродными генами тех или иных белков. За этой системой большое будущее, так как она позволяет изменить биосинтетические процессы в растениях без длительных и дорогостоящих манипуляций с растительным геномом.
3.4. Генные вакцины. Актуальность разработки новых вакцин.
Вакцины — одно из самых значительных достижений медицины, их использование к тому же чрезвычайно эффективно с экономической точки зрения. В последние годы разработке вакцин стали уделять особое внимание. Это обусловлено тем, что до настоящего времени не удалось получить высокоэффективные вакцины для предупреждения многих распространенных или опасных инфекционных заболеваний. По данным созданной в прошлом году международной организации «Всемирный союз по вакцинам и иммунизации» (в числе ее участников — ВОЗ, ЮНИСЕФ, Международная федерация ассоциаций производителей фармацевтической продукции, Программа Билла и Мелинды Гейтс по вакцинации детей, Рокфеллеровский фонд и др.), в настоящее время отсутствуют эффективные вакцины, способные предупредить развитие СПИДа, туберкулеза и малярии, от которых в 1998 г. умерло около 5 млн человек. Кроме того, увеличилась заболеваемость, обусловленная теми инфекциями, с которыми человечество ранее успешно боролось. Этому способствовало появление лекарственно-устойчивых форм микроорганизмов, увеличение числа ВИЧ-инфицированных пациентов с иммунной недостаточностью, ослабление систем здравоохранения в странах с переходной экономикой, увеличение миграции населения, региональные конфликты и др. При этом распространение микроорганизмов, устойчивых к воздействию антибактериальных препаратов, приобрело характер экологической катастрофы и поставило под угрозу эффективность лечения многих тяжелых заболеваний. Повышенный интерес к вакцинам возник после того, как была установлена роль патогенных микроорганизмов в развитии тех заболеваний, которые ранее не считали инфекционными. Например, гастриты, пептическая язва желудка и двенадцатиперстной кишки, ассоциированная с H. pylori, злокачественные новообразования печени (вирусы гепатита В и С).
3.5. Разработка ДНК-вакцин.
Используемые
сегодня вакцины можно
• живые аттенуированные вакцины;
• инактивированные вакцины;
• вакцины, содержащие
очищенные компоненты микроорганизмов
(протеины или полисахариды);
• рекомбинантные вакцины,
содержащие компоненты микроорганизмов,
полученные методом генной инженерии.
Технологию рекомбинантной ДНК применяют также для создания живых ослабленных вакцин нового типа, достигая аттенуации путем направленных мутаций генов, кодирующих вирулентные протеины возбудителя заболевания. Эту же технологию используют и для получения живых рекомбинантных вакцин, встраивая гены, кодирующие иммунногенные протеины, в живые непатогенные вирусы или бактерии (векторы), которые и вводят человеку. |
3.6. Генная инженерия человека.
В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков.
В настоящее время эффективные методы изменения генома человека находятся на стадии разработки. Долгое время генетическая инженерия обезьян сталкивалась с серьезными трудностями, однако в 2009 году эксперименты увенчались успехом: дал потомство первый генетически модифицированный примат - игрунка обыкновенная.
Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременнеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.
4. МОЛЕКУЛЯРНАЯ ГЕНЕТИКА НАСЛЕДСТВЕННОЙ ПАТОЛОГИИ
Молекулярная
генетика наследственных болезней - это
относительно молодая отрасль молекулярной
медицины. Ее зарождение связано с
разработкой нового методического
арсенала (методическая революция 70-х
годов), который предоставил исследоват
Методическая революция 70-х годов имела следствием не только усовершенствование техники генетического анализа и увеличение его разрешающей способности, но и принципиальные изменения методологии современной генетики. Классическая генетика имеет дело с анализом фенотипических признаков разной степени сложности (структура и функциональная активность белков, морфологические признаки, клинические проявления болезней и т.д.), их сцепления и мутационных изменений. При этом изменения признаков трактуются как следствие мутаций соответствующих генов, а идентификация нормального гена, как правило, основана на обнаружении его мутантных (полиморфных) аллелей. Такая стратегия генетических исследований (''от признака к гену'' и ''от мутантного аллеля к нормальному гену'') характерна для всего предшествующего периода развития генетики человека.
Разработка
принципиально новых
Эта принципиально новая стратегия генетических исследований, особенно важная для изучения генома человека и основ наследственных болезней, может быть сформулирована в форме общих принципов ''от гена к белку'' и ''от нормального гена к мутантному аллелю''. В целом это направление иногда в литературе называют ''обратная генетика'', что подчеркивает принципиальное различие методологий классической (прямой) и молекулярной (обратной) генетики. Совершенно очевидно, что в применении к изучению наследственных болезней эти два разных направления не должны противопоставляться. Между ними нет антагонизма. Наоборот, только комплексное (молекулярное, биохимическое, клиническое) исследование наследственных дефектов будет способствовать решению таких важных фундаментальных и прикладных проблем, как выяснение молекулярных основ этиологии и патогенеза моногенных наследственных болезней, идентификация генетических факторов риска распространенных болезней, пренатальная и преклиническая диагностика и профилактика наследственной патологии, наконец, генная терапия как способ ее радикальной коррекции. В то же время с позиций обратной генетики требуются уточнение и конкретизация некоторых терминов и понятий, привычных и достаточных для трактовки сложных и вариабельных взаимоотношений генотип - фенотип с точки зрения классической генетики.
4.1. Наследственные болезни – объект обратной генетики.
Каталог моногенных
признаков человека, наследуемых
в соответствии с законами Менделя
(болезни и нейтральные
4.2. Транс-действующие мутации.
Существует
довольно большое количество наследственных
дефицитов индивидуальных белков или
групп функционально родственны
5. ПРОБЛЕМАТИКА ГЕННОЙ ИНЖЕНЕРИИ.
5.1. Потенциальная опасность генно-инженерных методов.
С появлением генно-инженерных методов стало ясно, что они несут в себе потенциальную опасность. В чем заключается эта опасность, какие проблемы юридического и этического характера рождает генная инженерия, как формируются и чем регламентируются основные этические принципы медицинской генетики?
Некоторые потенциально опасные исследования (например, включение генов опухолеродных вирусов в ДНК плазмид) еще недавно находились под запретом. Многие предлагают запретить генную инженерию. Однако эти предложения не обоснованны по следующим причинам.
Во-первых, в настоящее время разработаны безопасные «векторы», которые вряд ли могут выживать и размножаться вне лабораторий. Чаще всего векторами выступают плазмиды. Весь процесс получения бактерий, несущих «нужный» ген, включает в себя несколько стадий: разрезание ДНК человека, включение фрагментов ДНК человека в плазмиды, введение рекомбинантных плазмид в бактериальные клетки, отбор среди клонов трансформированных бактерий тех, которые несут нужный человеческий ген.
Во-вторых, в
большинстве экспериментов
В-третьих, отработаны обычные меры техники безопасности, при соблюдении которых исключены утечки опасных генетических конструкций.
В-четвертых, в природе существуют пути переноса ДНК от одних видов другим, аналогичные тем, что используются в лабораториях, а генную инженерию, осуществляемую природой, нельзя запретить (речь идет о возможности существования трансдукции генов от одного вида к другому с помощью вирусов).
5.2. Биоэтика. Центральные постулаты биоэтического кодекса.
Нарастающее
проникновение биотехнологий в
изучение наследственности человека вызвало
необходимость появления
Из общей этики, которая возникла еще во времена античности как часть практической философии, в наше время выделилась биоэтика – наука об этичном отношении ко всему живому, в том числе и к человеку. Это важная ступень развития этики в современную эпоху, поскольку присущие промышленному производству высокие технологии очень агрессивны по отношению к человеку, и не только к его телесному здоровью, но и к интеллектуально-эмоциональной сфере.
Биоэтика регламентирует поведение людей по отношению друг к другу в условиях применения высоких технологий, которые могут изменить их тело, психику или (особенно!) потомство.
В биоэтике имеются ключевые понятия, которые образуют некий общий биоэтический кодекс, так называемые центральные постулаты. Они сводятся к следующему.
а. Признание автономности личности, права человека самому решать все вопросы, которые касаются его тела, психики, эмоционального статуса.
б. Справедливый и равный доступ к любым видам общественных благ, в том числе к медицине и биотехнологиям, созданным на средства общества.