Автор работы: Пользователь скрыл имя, 15 Октября 2009 в 13:20, Не определен
В работе раскрыты особенности клеточного строения растений и животных
В строении молекул белков различают 4 уровня организации:
Нарушение природной структуры белка называют денатурацией. Она возникает под воздействием высокой температуры, химических веществ, лучистой энергии и др. факторов.
Роль белка в жизни клеток и организмов:
Ферменты - белки и биополимеры. Синтезируются в рибосомах. Бывают двух типов: однокомпонентные (состоят только из белка) и двухкомпонентные (из белка и небелкового компонента неорганического [металла] и органического [витамина]). Почти каждая химическая реакция в клетке катализируется особым ферментом. Обязательным этапом в катализируемой реакции является взаимодействие фермента с веществом, превращение которого он катализирует - с субстратом. Образуется фермент - субстратный комплекс. Активный центр - это участок белковой молекулы, который обеспечивает соединение фермента с субстратом и дает возможность для дальнейших превращений субстрата (это или функциональная группа, или отдельная аминокислота). Фермент ориентирует функциональные группы, входящие в активный центр, чтобы проявилась наибольшая каталитическая активность. Ферменты участвуют в синтезе белка, ДНК и РНК. Они содержатся в слюне, в желудочном соке, в каждой клетке.
Липиды - нерастворимые в воде жиры и жироподобные вещества, состоящие из глицерина и высокомолекулярных жирных кислот. Жиры - сложные эфиры трехатомного спирта глицерина и высших жирных кислот. Животные жиры содержатся в молоке, мясе, подкожной клетчатке. У растений - в семенах, плодах. Кроме жиров в клетках присутствуют и их производные - стероиды (холестерин, гормоны и жирорастворимые витамины А, D, К, Е, F).
Липиды являются:
Нуклеиновые кислоты. Название "нуклеиновые кислоты" происходит от латинского слова "нуклеус", т. е. ядро: они впервые были обнаружены в клеточных ядрах. Биологическое значение нуклеиновых кислот очень велико. Они играют центральную роль в хранении и передаче наследственных свойств клетки, поэтому их часто называют веществами наследственности. Нуклеиновые кислоты обеспечивают в клетке синтез белков, точно таких же, как в материнской клетке и передачу наследственной информации. Существует два вида нуклеиновых кислот - дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК).
Молекула ДНК состоит из двух спирально закрученных цепей. ДНК - полимер, мономерами которого являются нуклеотиды. Нуклеотиды - соединения, состоящие из молекулы фосфорной кислоты, углевода дезоксирибозы и азотистого основания. У ДНК четыре типа азотистых оснований: аденин (А), гуанин (Г), цитозин (Ц), тимин (Т). Каждая цепь ДНК - полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов. Удвоение ДНК - редупликация - обеспечивает передачу наследственной информации от материнской клетки к дочерним.
РНК - полимер, по структуре сходный с одной цепочкой ДНК, но меньших размеров. Мономеры РНК - нуклеотиды, состоящие из фосфорной кислоты, углевода рибозы и азотистого основания. Вместо тимина в РНК присутствует урацил. Известны три вида РНК: информационная (и-РНК) - передает информацию о структуре белка с молекулы ДНК; транспортная (т-РНК) - транспортирует аминокислоты к месту синтеза белка; рибосомная (р-РНК) - содержится в рибосомах, участвует в поддержании структуры рибосомы.
АТФ. Очень важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены два остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой (АТФ). АТФ - универсальный биологический аккумулятор энергии: световая энергия солнца и энергия, заключенная в потребляемой пище, запасается в молекулах АТФ. АТФ - неустойчивая структура, при переходе АТФ в АДФ (аденозиндифосфат) выделяется 40 кДж энергии. АТФ образуется в митохондриях клеток животных и при фотосинтезе в хлоропластах растений. Энергия АТФ используется для совершения химической (синтез белков, жиров, углеводов, нуклеиновых кислот), механической (движение, работа мышц) работ, трансформации в электрическую или световую (разряды электрических скатов, угрей, свечение насекомых) энергии.
ПРОИСХОЖДЕНИЕ ЭУКАРИОТИЧЕСКОЙ КЛЕТКИ
Основные признаки эукариот:
Эукариоты делятся на три царства: растений, грибов, животных.
Еще в начале XX в. русские ботаники А. С. Фаминцин и К. С. Мережковский выдвинули гипотезу о том, что клетка зеленых растений (эукариот) получила пластиды в результате симбиоза бесхлорофилльной клетки с клетками сине-зеленых. Эта гипотеза симбиогенетического происхождения клетки эукариот вновь привлекла внимание в середине XXв. Помимо ядерной ДНК небольшое ее количество обнаружено в митохондриях, пластидах, центриолях, в основании жгутиков.
Электронно-микроскопическое сравнение строения жгутиков и центриолей говорит о несомненности их родства. В основе этих органелл всегда находится одиннадцать трубочек, девять из которых расположены по окружности и две лежат в центре. Установлено, что внеядерная ДНК жгутиков и центриолей способна самостоятельно редуплицироваться. Оказалось, что ДНК митохондрий, пластид, по-видимому, и жгутиков, а также центриолей имеет нитчатую структуру, связанную в кольцо, как у типичных прокариот. Все эти факты позволили в конце 60-х годов вновь вернуться к гипотезе симбиогенетического происхождения клетки эукариот.
Названную гипотезу разработала американская исследовательница Л. Маргулис. Согласно этой гипотезе первичная клетка крупной прокариотической бактерии, вступив в симбиоз с клетками сине-зеленых, приобрела пластиды. Симбиоз с гетеротрофными прокариотическими клетками привел к их преобразованию в митохондрии. Симбиоз со спирохетоподобными бактериями мог привести к возникновению жгутиков и т. д. Биохимические, генетические, электронно-микроскопические данные последних лет делают гипотезу Л. Маргулис все более обоснованной. В любом случае, двойственная природа ДНК ядра и ДНК цитоплазматических органелл и удивительное сходство последней с ДНК прокариот свидетельствует о том, что симбиоз сыграл выдающуюся роль в возникновении клетки эукариот.
МЕТОДЫ ИССЛЕДОВАНИЯ КЛЕТКИ
Современная
цитология располагает
Световая микроскопия
Современный световой микроскоп представляет собой весьма современный прибор, который до сих пор имеет первостепенное значение в изучении клеток и их органоидов. С помощью светового микроскопа достигается увеличение в 2000 – 2500 раз. Увеличение микроскопа зависит от его разрешающей способности, т. е. наименьшего расстояния между двумя точками, которые видны раздельно. В настоящее время создано много разнообразных моделей световых микроскопов. Они обеспечивают возможность многостороннего исследования клеточных структур и их функций.
Электронная микроскопия
С изобретением электронного микроскопа в 1933 году началась новая эпоха в изучении строения клетки.
С помощью современного электронного микроскопа удалось рассмотреть много новых важных органоидов клетки, которые при изучении в световом микроскопе казались просто бесструктурными участками.
Основное отличие электронного микроскопа от светового в том, что в нем вместо света используется быстрый поток электронов, а стеклянные линзы заменены электромагнитными полями. Источником электронов, т. е. катодом, служит вольфрамовая нить, нагреваемая электрическим током до раскаленного состояния. Пучок электронов, вылетающих из раскаленной вольфрамовой нити, направляется к аноду. Движение электронов от катода к аноду осуществляется под ускоряющим воздействием разности потенциалов. В центре анода имеется небольшое отверстие. Сквозь него проходят электроны, и пучок их фокусируется магнитной катушкой, играющей роль линзы, которая направляет его на объект. Когда пучок электронов уже прошел через объект, изображение его увеличивается с помощью второй магнитной катушки, которая действует как линза объектива; затем пучок электронов проходит через третью магнитную катушку, действующую в качестве окуляра или проекционной линзы и увеличивающую уже полученное изображение объекта.
Для
электронномикроскопического
Электронный микроскоп особенно широко стал применяться для биологических исследований в последние 10 – 15 лет и неизмеримо расширил возможности изучения тончайших деталей строения клетки.
Методы исследования живых клеток
Микроскопическое исследование живых клеток и тканей широко применяется в цитологии для самых различных целей, например для изучения изменений, происходящих в клетках при разнообразных внешних воздействиях, для выяснения закономерностей обмена веществ в клетках, для изучения клеточных структур, токов цитоплазмы, клеточной проницаемости и т. д.
Приготовление препаратов живых клеток. Наблюдения над живыми клетками требуют, прежде всего, приготовления специальных препаратов. Мелкие организмы, такие, как одноклеточные водоросли, простейшие, бактерии и др. переносятся вместе с каплей среды, в которой они культивируются, на предметное стекло. Препарат накрывается покровным стеклом, и его можно исследовать под микроскопом. Живые клетки из тканей многоклеточных организмов исследовать труднее, так как для приготовления препаратов эти клетки нужно отделить от ткани, что связано с нанесением им каких-то повреждений. Выделение клеток, а также наблюдения над ними необходимо производить в средах, пригодных для более или менее продолжительного переживания их и разных для различных организмов. Так, клетки растений обычно исследуются в воде, а клетки разнообразных холоднокровных и теплокровных животных – в физиологическом растворе.