Автор работы: Пользователь скрыл имя, 17 Ноября 2010 в 18:29, Не определен
Клеточный цикл: общие сведения
Повторяющаяся
совокупность событий, обеспечивающих
деление эукариотических
Делению клетки ( митозу или мейозу ) предшествует удвоение хромосом, которое происходит в периоде S клеточного цикла. Период обозначают первой буквой слова synthesis - синтез ДНК. С момента окончания периода S до завершения метафазы ядро содержит в четыре раза больше ДНК, чем ядро сперматозоида или яйцеклетки, а каждая хромосома состоит из двух идентичных сестринских хроматид.
Во время митоза хромосомы конденсируются и в конце профазы или начале метафазы становятся различимыми при оптической микроскопии . Для цитогенетического анализа обычно используют препараты именно метафазных хромосом.
В начале анафазы центромеры гомологичных хромосом разъединяются, и хроматиды расходятся к противоположным полюсам митотического веретена. После того как к полюсам отойдут полные наборы хроматид (с этого момента их называют хромосомами), вокруг каждого из них образуется ядерная оболочка, формируя ядра двух дочерних клеток (разрушение ядерной оболочки материнской клетки произошло в конце профазы ). Дочерние клетки вступают в период G1 , и только при подготовке к следующему делению они переходят в период S и в них происходит репликация ДНК.
Клетки со специализированными функциями, длительное время не вступающие в митоз или вообще утратившие способность к делению, находятся в состоянии, называемом периодом G0 .
Большинство клеток в организме диплоидные - то есть имеют два гаплоидных набора хромосом (гаплоидный набор - это число хромосом в гаметах, у человека он составляет 23 хромосомы, а диплоидный набор хромосом - 46).
В гонадах предшественники половых клеток сначала претерпевают ряд митотических делений, а затем вступают в мейоз - процесс образования гамет, состоящий из двух последовательных делений. В мейозе гомологичные хромосомы спариваются (отцовская 1-я хромосома с материнской 1-й хромосомой и т. д.), после чего в ходе так называемого кроссинговера происходит рекомбинация, то есть обмен участками между отцовской и материнской хромосомами. В результате качественно изменяется генетический состав каждой из хромосом.
В первом делении мейоза расходятся гомологичные хромосомы (а не сестринские хроматиды, как в митозе ), вследствие чего образуются клетки с гаплоидным набором хромосом, каждая из которых содержит по 22 удвоенные аутосомы и одной удвоенной половой хромосоме.
Между первым и вторым делениями мейоза нет периода S ( рис. 66.2 , справа), а в дочерние клетки во втором делении расходятся сестринские хроматиды. В итоге образуются клетки с гаплоидным набором хромосом, в которых вдвое меньше ДНК, чем в диплоидных соматических клетках в периоде G1, и в 4 раза меньше - чем в соматических клетках по окончании периода S.
При оплодотворении число хромосом и содержание ДНК у зиготы становится таким же, как в соматической клетке в периоде G1.
Период S в зиготе открывает путь к регулярному делению, характерному для соматических клеток.
Клеточный цикл эукариот разделяют на четыре фазы. В стадии непосредственного деления клеток (митоза) конденсированные метафазные хромосомы поровну распределяются между дочерними клетками ( M-фаза клеточного цикла - mitosis ). Митоз был первой идентифицированной фазой клеточного цикла, а все остальные события, происходящие в клетке между двумя митозами, были названы интерфазой . Развитие исследований на молекулярном уровне позволило выделить в интерфазе стадию синтеза ДНК, получившую название S-фазы (synthesis) . Эти две ключевые стадии клеточного цикла не переходят непосредственно одна в другую. После окончания митоза до начала синтеза ДНК имеет место G1-фаза клеточного цикла (gap) , кажущаяся пауза в активности клетки, во время которой внутриклеточные синтетические процессы подготавливают репликацию генетического материала.
Второй перерыв в видимой активности ( фаза G2 ) наблюдается после окончания синтеза ДНК перед началом митоза. В фазе G2 клетка осуществляет контроль за точностью произошедшей редупликации ДНК и исправляет обнаруженные сбои. В ряде случаев выделяют пятую фазу клеточного цикла ( G0 ), когда после завершения деления клетка не вступает в следующий клеточный цикл и длительное время остается в состоянии покоя. Из этого состояния она может быть выведена внешними стимулирующими (митогенными) воздействиями.
Фазы клеточного цикла не имеют четких временных и функциональных границ, однако при переходе от одной фазы к другой происходит упорядоченное переключение синтетических процессов, позволяющее на молекулярном уровне дифференцировать эти внутриклеточные события.
Клетки вступают в клеточный цикл и осуществляют синтез ДНК в ответ на внешние митогенные стимулы. Лимфокины (например, интерлейкины ), цитокины (в частности интерфероны ) и полипептидные факторы роста, взаимодействуя со своими рецепторами на поверхности клеток, индуцируют каскад реакций фосфорилирования внутриклеточных белков, сопровождающихся передачей сигнала от поверхности клеток к ядру и индукцией транскрипции соответствующих генов. Одними из первых активируются гены, кодирующие белки циклины , получившие свое название от того, что их внутриклеточная концентрация периодически изменяется по мере прохождения клеток через клеточный цикл, достигая максимума на его определенных стадиях. Циклины являются специфическими активаторами семейства циклин-зависимых протеинкиназ (CDK) ( CDK - cyclin-dependent kinases ) - ключевых участников индукции транскрипции генов, контролирующих клеточный цикл. Активация индивидуальной CDK происходит после ее взаимодействия со специфическим циклином, и образование этого комплекса становится возможным после достижения циклином критической концентрации. В ответ на уменьшение внутриклеточной концентрации конкретного циклина происходит обратимая инактивация соответствующей CDK. Некоторые CDK активируются более чем одним циклином. В этом случае группа циклинов, как бы передавая протеинкиназы друг другу, поддерживает их в активированном состоянии длительное время. Такие волны активации CDK возникают на протяжении G1- и S- фаз клеточного цикла.
Каждый тип циклинов, обозначенных от A до H, имеет гомологичный участок (150 аминокислотных остатков, называемый " циклиновый бокс ". Этот участок отвечает за связывание с CDK . В семействе циклинов (циклин A - циклин J) известны 14 белков. Некоторые члены семейства составляют подсемейства. Например, подсемейство циклинов D-типа состоит из трех членов: D1, D2 и D3.Циклины делят на два подсемейства: G1-циклины ( C , D и E ) и митотические циклины ( A и B ).
Циклины относятся к быстро обменивающимся белкам с коротким временем полужизни, которое составляет у циклинов D-типа 15-20 мин. Это обеспечивает динамизм их комплексов с циклинзависимыми киназами . За внутриклеточную деградацию циклинов отвечает N-концевая последовательность аминокислотных остатков, названная боксом деструкции (destruction box) . При прохождении клеток через клеточный цикл вслед за активацией отдельных CDK по мере необходимости происходит их инактивация. В последнем случае имеет место протеолитическая деградация циклина, находящегося в комплексе с CDK, которая начинающается с бокса деструкции.
Сами по себе циклины не могут полностью активировать соответствующие CDK. Для завершения процесса активации должно произойти специфическое фосфорилирование и дефосфорилирование определенных остатков аминокислот в полипептидных цепях этих протеинкиназ. Большую часть таких реакций осуществляет киназа, активирующая CDK (CAK - CDK activating kinase) , которая представляет собой комплекс CDK7 с циклином H . Таким образом, CDK становятся способными выполнять свои функции в клеточном цикле лишь после их взаимодействия с соответствующими циклинами и осуществления посттрансляционных модификаций под действием CAK и других аналогичных белков-регуляторов клеточного цикла.
В ответ на митогенный стимул клетка, находящаяся в фазе G0 или ранней G1 , начинает свое прохождение через клеточный цикл. В результате индукции экспрессии генов циклинов D и E , которые обычно объединяют в группу циклинов G1 , происходит увеличение их внутриклеточной концентрации. Циклины D1 , D2 и D3 образуют комплекс с киназами CDK4 и CDK6 . В отличие от циклина D1 два последних циклина, кроме того, объединяются с CDK2 . Функциональные различия между этими тремя циклинами неизвестны, однако имеющиеся данные указывают на достижение ими критических концентраций при разных стадиях развития фазы G1. Эти различия специфичны в отношении типа пролиферирующих клеток.