Автор работы: Пользователь скрыл имя, 19 Июня 2015 в 03:56, курсовая работа
Возможности, открываемые биотехнологией перед человечеством, как в области фундаментальной науки, так и во многих других областях, весьма велики и нередко даже революционны. Так, она позволяет осуществлять индустриальное массовое производство нужных белков, значительно облегчает технологические процессы для получения продуктов ферментации - энзимов и аминокислот, в будущем может применяться для улучшения растений и животных, а также для лечения наследственных болезней человека. Клеточная инженерия и биотехнология, будучи одними из магистральных направлений научно-технического прогресса, активно способствуют ускорению решения многих задач, таких, как продовольственная, сельскохозяйственная, энергетическая, экологическая.
Важное направление клеточной инженерии связано с ранними эмбриональными стадиями. Так, оплодотворение яйцеклеток в пробирке позволяет преодолеть бесплодие. С помощью инъекции гормонов можно получить от одного животного десятки яйцеклеток, искусственно их оплодотворить in vitro и имплантировать в матку других животных. Эта технология применяется в животноводстве для получения монозиготных близнецов. Разработан новый метод, основанный на способности индивидуальных клеток раннего эмбриона развиваться в нормальный плод. Клетки эмбриона разделяют на несколько равных частей и трансплантируют реципиентам. Это позволяет размножать различных животных ускоренным путем. Манипуляции на эмбрионах используют для создания эмбрионов различных животных. Подход позволяет преодолеть межвидовой барьер и создавать химерных животных. Таким образом получены, например, овце-козлиные химеры. [12]
Наиболее перспективным направлением клеточной инженерии является гибридомная технология. Гибридные клетки (гибридомы) образуются в результате слияния клеток с различными генетическими программами, например, нормальных дифференцированных и трансформированных клеток. Блестящим примером достижения данной технологии являются гибридомы, полученные в результате слияния нормальных лимфоцитов и миеломных клеток. Эти гибридные клетки обладают способностью к синтезу специфических антител, а также к неограниченному росту в процессе культивирования.
В отличие от традиционной техники получения антител, гибридомная техника впервые позволила получить моноклональные антитела (антитела, продуцируемые потомками одной-единственной клетки). Моноклональные антитела высокоспецифичны, они направлены против одной антигенной детерминанты. Возможно получение нескольких моноклональных антител на разные антигенные детерминанты, в том числе сложные макромолекулы. [13]
Моноклональные антитела в промышленных масштабах получены сравнительно недавно. Как известно, нормальная иммунная система спо-собна в ответ на чужеродные агенты (антигены) вырабатывать до миллиона различных видов антител, а злокачественная клетка синтезирует только антитела одного типа. Миеломные клетки быстро размножаются. Поэтому культуру, полученную от единственной миеломной клетки, можно поддерживать очень долго. Однако невозможно заставить миеломные клетки вырабатывать антитела к определенному антигену. Эту проблему удалось решить в 1975 г. Цезарю Мильштейну. У сотрудников Медицинской научно-исследовательской лаборатории молекулярной биологии в Кембридже возникла идея слияния клеток мышиной миеломы с В-лимфоцитами из селезенки мыши, иммунизированной каким-либо специфическим антигеном. Образующиеся в результате слияния гибридные клетки приобретают свойства обеих родительских клеток: бессмертие и способность секретировать огромное количество какого-либо одного антитела определенного типа. [4]
В 1980 г. Карло М. Кроче с сотрудниками (США) удалось создать стабильную, продуцирующую антигены, внутривидовую человеческую гибридому путем слияния В-лимфоцитов миеломного больного с периферическими лимфоцитами от больного с подострым панэнцефалитом.
Основные этапы получения гибридомной техники следующие. Мышей иммунизируют антигеном, после этого из селезенки выделяют спленоциты, которые в присутствии полиэтиленгликоля сливают с дефектными опухолевыми клетками (обычно дефектными по ферментам запасного пути биосинтеза нуклеотидов – гипоксантина или тиамина). Далее на селективной среде, позволяющей размножаться только гибридным клеткам, проводят их отбор. Питательную среду с растущими гибридомами тестируют на присутствие антител. Положительные культуры отбирают и клонируют. Клоны инъецируют животным с целью образования опухоли, продуцирующей антитела, либо наращивают их в культуре. Асцитная жидкость мыши может содержать до 10–30 мг/мл моноклональных антител.
Гибридомы можно хранить в замороженном состоянии, и в любое время вводить дозу такого клона в животное той линии, от которой получены клетки для слияния. В настоящее время созданы банки моноклональных антител. Антитела применяют в разнообразных диагностических и терапевтических целях, включая противораковое лечение. [6]
Эффективным способом применения моноклональных антител в терапии является связывание их с цитоксическими ядами. Антитела, конъюгированные с ядами, отслеживают и уничтожают в макроорганизме раковые клетки определенной специфичности. [10]
Вклад биотехнологии в сельскохозяйственное производство заключается в облегчении традиционных методов селекции растений и животных и разработке новых технологий, позволяющих повысить эффективность сельского хозяйства. Во многих странах методами генетической и клеточной инженерии созданы высокопродуктивные и устойчивые к вредителям, болезням, гербицидам сорта сельскохозяйственных растений. Разработана техника оздоровления растений от накопленных инфекций, что особенно важно для вегетативно размножаемых культур (картофель и др.). Как одна из важнейших проблем биотехнологии во всем мире широко исследуется возможность управления процессом азотфиксации, в том числе возможность введения генов азотфиксации в геном полезных растений, а также процессом фотосинтеза. Ведутся исследования по улучшению аминокислотного состава растительных белков. Разрабатываются новые регуляторы роста растений, микробиологические средства защиты растений от болезней и вредителей, бактериальные удобрения. Генноинженерные вакцины, сыворотки, моноклональные антитела используют для профилактики, диагностики и терапии основных болезней сельскохозяйственных животных. В создании более эффективных технологий племенного дела применяют генноинженерный гормон роста, а также технику трансплантации и микроманипуляций на эмбрионах домашних животных. Для повышения продуктивности животных используют кормовой белок, полученный микробиологическим синтезом. [14]
Биотехнологические процессы с использованием микроорганизмов и ферментов уже на современном техническом уровне широко применяют в пищевой промышленности. Промышленное выращивание микроорганизмов, растительных и животных клеток используют для получения многих ценных соединений -- ферментов, гормонов, аминокислот, витаминов, антибиотиков, метанола, органических кислот (уксусной, лимонной, молочной) и т. д. С помощью микроорганизмов проводят биотрансформацию одних органических соединений в другие (например, сорбита во фруктозу). Широкое применение в различных производствах получили иммобилизованные ферменты. Для выделения биологически активных веществ из сложных смесей используют моноклональные антитела. А. С. Спириным в 1985-88 разработаны принципы бесклеточного синтеза белка, когда вместо клеток применяются специальные биореакторы, содержащие необходимый набор очищенных клеточных компонентов. Этот метод позволяет получать разные типы белков и может быть эффективным в производстве. Многие промышленные технологии заменяются технологиями, использующими ферменты и микроорганизмы. Таковы биотехнологические методы переработки сельскохозяйственных, промышленных и бытовых отходов, очистки и использования сточных вод для получения биогаза и удобрений. В ряде стран с помощью микроорганизмов получают этиловый спирт, который используют как горючее для автомобилей (в Бразилии, где топливный спирт широко применяется, его получают из сахарного тростника и других растений). На способности различных бактерий переводить металлы в растворимые соединения или накапливать их в себе основано извлечение многих металлов из бедных руд или сточных вод. [7]
Генная и клеточная инженерия - являются важнейшими методами (инструментами), лежащими в основе современной биотехнологии. Методы клеточной инженерии направлены на конструирование клеток нового типа. Они могут быть использованы для воссоздания жизнеспособной клетки из отдельных фрагментов разных клеток, для объединения целых клеток, принадлежавших различным видам с образованием клетки, несущей генетический материал обеих исходных клеток, и других операций.
Генно-инженерные методы направлены на конструирование новых, не существующих в природе сочетаний генов. В результате применения генно-инженерных методов можно получать рекомбинантные (модифицированные) молекулы РНК и ДНК, для чего производится выделение отдельных генов (кодирующих нужный продукт), из клеток какого-либо организма. После проведения определенных манипуляций с этими генами осуществляется их введение в другие организмы (бактерии, дрожжи и млекопитающие), которые, получив новый ген (гены), будут способны синтезировать конечные продукты с измененными, в нужном человеку направлении, свойствами. Иными словами, генная инженерия позволяет получать заданные (желаемые) качества изменяемых или генетически модифицированных организмов или так называемых «трансгенных» растений и животных. [3]
Наибольшее применение генная инженерия нашла в сельском хозяйстве и в медицине.
Таким образом, клеточная инженерия является эффективным способом модификации биологических объектов и позволяет получать новые ценные продуценты на органном и также клеточном и тканевом уровнях.