Автор работы: Пользователь скрыл имя, 05 Апреля 2012 в 17:02, реферат
Клетка — элементарная живая система и основная форма организации живой материи: она усваивает пищу, способна существовать и расти, может разделиться на две, каждая из которых содержит генетический материал, идентичный исходной клетке. Клетка — это один из основных структурных, функциональных и воспроизводящих элементов живого.
Введение 3
1. Клеточная теория 4
2. Типы клеточной организации 7
3. Строение клетки 9
3.1. Клеточные мембраны 10
3.2. Цитоплазма и ее органеллы 13
3.2.1. Строение и функции основных органелл клетки 13
Заключение 21
Литература 22
2
Реферат
Клетка как элементарная живая система
2010
Содержание
Введение 3
1. Клеточная теория 4
2. Типы клеточной организации 7
3. Строение клетки 9
3.1. Клеточные мембраны 10
3.2. Цитоплазма и ее органеллы 13
3.2.1. Строение и функции основных органелл клетки 13
Заключение 21
Литература 22
Введение
Онтогенетический уровень живого представлен отдельными организмами (особями). Клетки как элементарные структуры действуют как самостоятельные организмы (бактерии, простейшие), а так же, как клетки многоклеточных организмов. Особенность клеточного подуровня в том, что именно с него и начинается жизнь.
Клетка — элементарная живая система и основная форма организации живой материи: она усваивает пищу, способна существовать и расти, может разделиться на две, каждая из которых содержит генетический материал, идентичный исходной клетке. Клетка — это один из основных структурных, функциональных и воспроизводящих элементов живого.
Между клетками растений и животных нет принципиальной разницы по строению и функциям, некоторые отличия лишь в строении мембран и некоторых органелл. За 3 млрд. лет существования на Земле живое вещество развилось до нескольких миллионов видов, но все они — от бактерий до высших животных — состоят из клеток. Специфичность клеточного подуровня заключается в специализации клеток. В человеческом организме до 1015 клеток. Половые клетки служат для размножения, соматические (от греч. soma — тело) имеют разное строение и функции (нервные, мышечные, костные). Клетки отличаются своими размерами, формой, количеством поглощенного красителя. Среди живого есть одно- и многоклеточные организмы. Вирусы — неклеточные организмы, они размножаются в чужих клетках. Некоторые водоросли потеряли свое клеточное строение. На клеточном уровне происходит разграничение и упорядочение процессов жизнедеятельности во времени и пространстве, что связано с приуроченностью функций к различным субклеточным структурам.
1. Клеточная теория
Основу современной биологии составляет клеточная теория, создание которой стало возможным после изобретения в 1590г. микроскопа. Родоначальником ее считается английский ученый Роберт Гук, который ввел термин «клетка», или «ячейка» в работе «Микрография» (1665). Изучая под микроскопом срез, приготовленный из пробки и сердцевины бузины, он заметил в этом составе множество мелких образований, похожих по форме на ячейки пчелиных сот. По существу, Р. Гук наблюдал не сами клетки, а лишь оболочки клеток, и ошибочно полагал, что это и есть живое существо.
Несмотря на то, что вопрос о клеточном строении всего живого был поставлен еще в XVII в., тем не менее, лишь во второй половине прошлого века строение клеток, их функции в эволюции живого стали более ясными за счет использования сверхточных приборов исследования живого.
Клеточная теория, или цитология (от греч. kytos... — сосуд, клетка), сложилась в течение XIX в., когда появились более совершенные микроскопы (в последнее время ее чаще называют биологией клетки). Английский ботаник Р. Броун открыл ядро (1833), описав его как характерное тельце растительных клеток. Его открытие послужило толчком к другим открытиям. У клеток выделяют два уровня организации — прокариоты, не имеющие оформленного ядра, и эукариоты, у которых оно есть. Обобщил наблюдения Броуна и установил клеточную природу растительной ткани немецкий ботаник М. Шлейден. Вместе со своим другом Т. Шванном он впервые сформулировал основные положения о клеточном строении всех организмов и образовании клеток (1839).
Основные принципы клеточной теории были сформулированы в работе Теодора Шванна «Микроскопические исследования о соответствии в структуре и росте животных и растений». Все организмы состоят из одинаковых частей — клеток. Клетки образуются, растут по одним и тем же законам. Общий принцип развития для всех элементарных частей организма — это образование клеток. Каждая клетка в определенных границах есть индивидуум, но эти индивидуумы действуют совместно, так что возникает гармоничное целое.
Чешский естествоиспытатель Я. Пуркине, открывший ядро яйцеклетки (1825) и проводивший исследования по физиологии зрительного восприятия, ввел понятие протоплазмы для клеточного содержимого (1839), когда понял, что именно оно, а не стенки клетки, является живым веществом. Позже протоплазму клетки стали разделять на цитоплазму и ядро.
«Все клетки образуются в результате деления других клеток» — дополнил немецкий патолог и антрополог Р. Вирхов (1855) клеточную теорию Шлейдена и Шванна. Он считал, что любой организм есть совокупность живых клеток, организованных наподобие небольшого государства. И каждая клетка ведет самостоятельную жизнь. Установили, что хранение и передача наследственных признаков осуществляются с помощью клеточного ядра (Вирхов, Геккель). При большем увеличении микроскопов в клетках открыли постоянные специализированные структуры (органоиды, или органеллы) — пластиды (такие, как хлоропласта, характерные для клеток, способных к фотосинтезу) и митохондрии. В 1898 г. итальянский гистолог К. Гольджи изобрел новый метод изучения клеток через микроскоп, вводя в них соли серебра, и обнаружил в нервных клетках совы и кошки сетчатые структуры, позднее названные аппаратом Гольджи.
Основа клеточной теории: клетка — основная структурная единица теории и единица развития живых организмов; ядро — основная составляющая клетки; клетки размножаются только делением; всем клеткам присуще мембранное строение; клеточное строение — свидетельство единого происхождения растительного и животного мира.
Приведем характеристику клетки как элементарной живой системы, предложенную А. Ленинджером.
1. Живая клетка – это способная к саморегуляции и самовоспроизведению изотермическая система органических молекул, извлекающая энергию и ресурсы из окружающей среды.
2. В клетке протекает большое количество последовательных реакций, регуляция скорости которых осуществляется самой клеткой.
3. Клетка поддерживает себя в стационарном динамическом состоянии, далеком от равновесия с окружающей средой.
4. Клетки функционируют по принципу минимального расхода компонентов и процессов.
5. Клетка способна почти точно самовоспроизводиться.
В начале XX в. многие биологи повторили опыты австрийского естествоиспытателя И.Менделя, открывшего еще в 1865 г. существование индивидуальных наследственных факторов (генов). Все это способствовало развитию цитогенетики.
Современная клеточная теория исходит из единства расчлененности многоклеточного организма на клетки и его целостности, основанной на взаимодействии клеток.
2. Типы клеточной организации
Все клетки живых организмов подразделяются на два вида с учетом их строения и функций в живых организмах: прокариоты (лат. pro — перед и греч. karyon — ядро), или предъядерные клетки, и эукариоты (греч. еу — полностью, хорошо и karyon — ядро) (рис.1).
Рис. 1. Схема организации про- и эукариотной клеток.
Простейшие организмы, представленные одной или небольшим числом клеток, состоят из клеток прокариотов. Прокариоты (доядерные) - это мелкие (около 1 мкм) клетки гораздо меньше эукариотных. В клетках прокариотов нет оформленного ядра и ядерной оболочки. Генетический материал ДНК - лежит свободно в цитоплазме. Эта часть клетки носит название «нуклеотид». Прочие функциональные блоки тоже представлены небольшими макромолекулярными комплексами без оболочек. К прокариотам относятся все бактерии и так называемые сине-зеленые водоросли. Клетки бактерий и сине-зеленых водорослей не имеют мембранных органелл, присущих эукариотам (ЭР, комплекса Гольджи, митохондрий, пластид, дисозом). Единственной внутренней мембранной структурой является мезосома, о функциональном значении которой нет единого мнения. Полагают, что она участвует в процессах дыхания.
Большинство клеток прокариотов имеют размер около 1 —5 мкм. Средний размер эукариотической клетки имеет диаметр около 25 мкм (1 мм—103 мкм или 109 нм). Таким образом, в эукариотическую клетку может поместиться более 10 тысяч бактерий.
Эукариоты (с настоящим ядром) - крупные (10-50 и более мкм) клетки, в которых ДНК в форме хромосом заключена в ядре и большинство рабочих структур, ферментов организовано в изолированных органоидах (или органеллах). Все эукариотические клетки имеют одинаковое строение: ядро с оболочкой, цитоплазма с органоидами и оболочка.
Изолирующую роль для ядра и органоидов (органелл) выполняют такие же липидно-белковые мембраны, как и мембрана клеточной поверхности. Эукариотную организацию имеют одноклеточные простейшие (амеба, инфузория и другие) и клетки многоклеточных организмов: грибов, растений, животных, включая человека.
3. Строение клетки
Клетки животных и растений (рис.2) различаются, но для них можно выделить три главные общие части:
• цитоплазму, представляющую собой коллоидную систему, содержащую, наряду с органическими ионами, продукты пластического и энергетического обмена, органеллы, а также запасные вещества и различные включения;
• клеточную, или плазматическую, мембрану, отделяющую цитоплазму от окружающей среды,
• клеточное ядро, в котором находится генетический материал клетки.
Рис.2. Строение клетки
3.1. Клеточные мембраны
Клеткам присуще мембранное строение — это одно из положений клеточной теории. Среди мембранных органоидов — наружная цитоплазматическая мембрана (НЦМ), эндоплазматическая сеть (ЭПС), аппарат Гольджи (АГ), лизосомы (Л), митохондрии (М), пластиды (П). В основе всех этих органелл лежит биологическая мембрана, все они имеют единый план строения. Мембранные структуры — арена важнейших жизненных процессов.
Биологическая мембрана (клеточная или плазматическая) — пленка, покрывающая клетку, и настолько тонкая, что ее удалось обнаружить лишь с помощью трансмиссионного электронного микроскопа. Все мембраны построены по одному плану, всегда слоистые. Поперечный разрез показывает, что по обе стороны внутренней, более светлой линии расположены более темные. Мембраны были открыты более века назад, но их роль в механизмах жизнедеятельности клеток до недавнего времени сводили в основном к барьерной функции. Опыты показали, что малые молекулы быстрее усваиваются живой клеткой, чем большие, и вещества, растворимые в воде и нерастворимые в жирах, проникают в клетку медленнее, чем растворимые в жирах. Значит, мембраны содержат жироподобные вещества — липиды и белки, способные связывать воду.
Клеточная мембрана, помимо барьерной функции, обеспечивает обмен между цитоплазмой и внешней средой, из которой в клетку поступают вода, ионы, различные молекулы, а выводятся продукты обмена веществ и синтезированные в клетке вещества.
Мембрана играет важную роль: при ее повреждении клетка сразу гибнет, в то же время без некоторых других структурных элементов жизнь клетки может продолжаться. Изменение проницаемости наружной мембраны — первый признак гибели клетки.
Все биологические мембраны, в том числе и плазматическая, имеют общие свойства и структурные особенности. Они представляют собой двойной слой липидов, гидрофобные хвосты которых обращены внутрь, а гидрофильные головки — наружу. В него погружены на различную глубину белки; некоторые из них даже пронизывают мембрану насквозь, контактируя при этом как с наружной, так и с внутренней средой клетки (они называются трансмембранными) (рис.3.).
Мембранные белки могут выполнять различные функции:
♦ транспорт определенных молекул;
♦ катализ реакций, ассоциированных с мембранами;
♦ поддержание структуры мембран;
♦ получение и преобразование сигналов из окружающей среды.
Рис.3. Строение клеточной мембраны
Не следует думать, что мембрана представляет собой жесткую структуру — большая часть белков и липидов, входящих в ее состав, способны перемещаться, главным образом в плоскости мембраны. Мембраны асимметричны, т. е. липидный и белковый состав обоих слоев различен. К тому же плазматические мембраны многих животных клеток имеют снаружи так называемый слой гликокаликса, состоящий из полисахаридов, прикрепленных к молекулам белка, и выполняющий, главным образом, сигнальную и рецепторную функции. Он играет важную роль в объединении клеток в ткани.
Наиболее важным свойством мембран является их избирательная проницаемость. Различные вещества обладают различной растворимостью в липидах, поэтому естественно, что биологические мембраны более проницаемы для незаряженных молекул. Однако скорости прохождения ряда веществ через мембрану не зависят от растворимости их в липидах. Установлено, что существует ряд механизмов, обеспечивающих проникновение веществ в клетку:
1. Диффузия. Вещество при этом перемещается через мембрану по диффузионному градиенту.
2. Пассивный транспорт или облегченная диффузия. В этом случае молекула-переносчик соединяется с переносимой молекулой или ионом на одной стороне мембраны и «перетягивает» его на другую. Пассивный транспорт может осуществляться и через формируемые молекулами белков особые каналы, пропускающие вещества только определенного типа. Перенос веществ здесь также осуществляется по градиенту концентрации.
3. Активный транспорт. Этот механизм сопряжен с затратами энергии и служит для переноса молекул против их градиента концентрации. Он осуществляется белками-переносчиками, образующими так называемые насосы, наиболее изученным из которых является Na+/ К+-насос в клетках животных, активно выкачивающий ионы Na+ наружу, поглощая при этом ионы К\ Благодаря этому в клетке поддерживается большая концентрация К+ и меньшая Na+, чем в окружающей среде. На этот процесс затрачивается энергия АТФ. В растительных клетках примером активного транспорта может служить водородная помпа.
4. Эндо- и экзоцитоз — поглощение веществ путем окружения их выростами плазматической мембраны, формирующими в дальнейшем пузырьки, отшнуровывающиеся от плазмалеммы. При этом различают фагоцитоз (поглощение твердых частиц) и пиноцитоз (поглощение жидкого материала). Экзоцитоз — выделение веществ из клетки — осуществляется в обратном порядке.
3.2. Цитоплазма и ее органеллы
Внутреннее содержание клетки представлено цитоплазмой и расположенными в ней органоидами (или органеллами).
Цитоплазма — это живая часть клетки, помимо ее ядра. Снаружи она окружена клеточной мембраной, а внутри — ядерной. Пространство между ядром и внутренней поверхностью плазматической мембраны заполнено нитями клеточного матрикса, который определяет форму клетки и принимает участие в функциях, связанных с движением (деление клетки и ее перемещения, внутриклеточный транспорт везикул и органелл).
Цитоплазма создает условия для осуществления физиологических реакций клетки и протекания биохимических процессов. Такое свойство цитоплазмы, как буферность, позволяет клетке осуществлять свою жизнедеятельность и поддерживать внутреннее постоянство среды при изменении внешней, а постоянное движение – осуществлять связь между органоидами.
3.2.1. Строение и функции основных органелл клетки
Органеллы — это рабочие субстанции клетки, выполняющие те или иные функции: производят энергию или приводят клетку в движение, служат для разделения клетки на области (или для выделения внутри нее областей) с разными условиями и содержат разные наборы молекул. К органеллам относятся ядро, эндоплазматический ретикулум, рибосомы, лизосомы, митохондрии, жгутики, комплексы Гольджи, хлоропласты.
Ядро содержит полимерные молекулы дезоКсирибонуклеиновой кислоты (ДНК), в которой закодирована вся информация о данном виде, и является хранителем генетической информации. В ряде одноклеточных организмов, называемых прокариотическими, ядро может отсутствовать. Роль хранителя генетической информации в них играет нуклеотид, не имеющий оболочки и состоящий из одной ДНК размером 1—5 мкм. Клетки, имеющие четко выраженные ядра, отделенные мембраной от остальной цитоплазмы, называются эукариотическими, их размер — 10—50 мкм. Размеры органелл составляют от 20 нм до 5 мкм (рибосомы —20 нм, ядра, митохондрии, хлоропласты - 1—5 мкм).
Ядро — основная часть клетки. От остальной части цитоплазмы ядро отделено ядерной оболочкой, состоящей из двух слоев плазматической мембраны. Наружная мембрана переходит непосредственно в эндоплазматический ретикулум.
В ядре различают ядрышко, кариоплазму и хроматин. Под электронным микроскопом ядро беспорядочно зернисто, а в одной его части зернистость резко возрастает, образуя ядрышко (иногда их несколько) — скопление рибосомальных белков и частей рибосом (рРНК), в основе которого лежит участок хромосомы, определяющий ее структуру и несущий ген. В растительных и животных клетках ДНК присутствует в виде структур размером около 1 мкм — хромосом (от греч. chroma — цвет, краска), число которых постоянно для каждого вида.
Ядрышко – сферическая структура, ее функция – синтез РНК, из которой состоят рибосомы.
Хромосомы представляют собой молекулы ДНК, связанные с белками. Хромосомы — это самостоятельные ядерные структуры, состоящие из двух продольных нитевидных половинок — сестринских хроматид (по внешнему виду их разделяют на равноплечие, неравноплечие и палочковидные). Клеточное ядро окрашено ядерными красителями почти равномерно, в микроскоп видна только его зернистость. Основные красители связываются нуклеиновыми кислотами.
Кариоплазма — жидкая фаза ядра, в которой находятся растворенные продукты жизнедеятельности.
Иногда вместо термина «хромосома» используют термин «хроматин». Оба термина являются синонимами. Выделяют две формы хроматина. Эухроматин представляет собой активно работающую и потому не спирализованную ДНК, невидимую в световой микроскоп. Гетерохроматин – не экспресирующая конденсированная ДНК, видимая в световой микроскоп в виде глыбок, расположенных главным образом по периферии ядра.
Ядру, содержащему хромосомы (с ДНК), принадлежит ведущая роль в явлениях наследственности.
Главными функциями ядра являются:
1. Хранение генетической информации и передача ее дочерним клеткам в процессе деления.
2. Контроль жизнедеятельности клетки путем определения, какие белки и в каких количествах должны синтезироваться.
Эндоплазматический ретикулум (ЭР) — это система внутриклеточных мембран, формирующих цистерны и каналы, разделяющие цитоплазму клетки на изолированные пространства компартменты. Это нужно для того, чтобы разделить множество параллельно идущих реакций. Мембраны ЭР служат местом протекания биосинтетических процессов. Выделяют шероховатый (ШЭР) и гладкий ЭР. Мембраны ШЭР содержат на своей поверхности рибосомы, на которых синтезируются белки, и представляют собой совокупность уплощенных мешочков. Строение гладкого ЭР ближе к трубчатому и одна из основных функций – синтез липидов. Помимо этого каналы ЭР служат внутриклеточной системой переноса и распределения веществ. В зависимости от функционального состояния клетки мембраны ЭР подвергаются процессам сборки и разборки. Кроме того, эндоплазматическая сеть служит местом образования цистерн для аппарата Гольджи.
Аппарат Голъджи (пластинчатый комплекс) представляет собой стопку из 5—30 уплощенных канальцев (цистерн), которые связаны друг с другом многочисленными пузырьками, отшнуровывающимися от ЭР. С помощью этих пузырьков, выполняющих транспортные функции, молекулы вещества, предназначенные для удаления из клетки и упакованные в гранулы, выводятся за пределы клетки.
Часто при описании трехмерной структуры аппарата Гольджи говорят, что он напоминает стопку блинов (рис. 4).
Рис.4. Аппарат Гольджи
У него выделяют наружную, обращенную к плазмалемме, и внутреннюю, соединенную с ЭР, поверхности. Функция данного органоида — транспорт и химическая модификация поступающих в него веществ. Кроме того, пластинчатый комплекс содержит собственные системы синтеза сложных углеводов из простых сахаров. Аппарат Гольджи представляет собой динамическую структуру, участвующую в потоке клеточных мембран. Он является промежуточным звеном между мембранами ЭР и плазмалеммой (наружная часть комплекса расходуется в процессе отшнуровывания пузырьков, а внутренняя постепенно формируется эндоплазматическим ретикулумом).
Стопки АГ обладают прецизионной внутренней структурой из трех отделов, специализирующихся на разных типах модификации белков. Белок, проходя через них, химически модифицируется в соответствии со своим предназначением, белки сортируются и отправляются по нужному адресу.
АГ наиболее ярко выражен в железистых тканях, поэтому посчитали, что он связан с железами внутренней секреции. В пузырьках накапливаются вещества, которые синтезируются и транспортируются по сети. В АГ эти вещества подвергаются химическим превращениям, потом упаковываются в мембранные пузырьки и выбрасываются из клеток в виде секретов.
В структуре АГ образуются лизосомы. В железистых клетках неподалеку от диктосом, на которые может распадаться структура АГ, особенно много митохондрий.
Лизосомы — мембранные пузырьки, содержащие литические ферменты гидролазы — протеазы, липазы, фосфотазы. Ферменты лизосом могут переваривать как поступившие в клетку путем эндоцитоза продукты, так и отдельные составные части клетки (а иногда ее целиком – автолиз). Лизосомы отшнуровывающиеся от аппарата Гольджи, куда поступают ферменты, синтезированные в ЭР, называются первичными лизосомами. Они могут сливаться с пузырьками эндоцитоза или мембранами, окружающими ненужную структуру, образуя вторичные лизосомы, в которых происходит процесс переваривания и лизис содержащихся в них продуктов.
Митохондрии (отгреч. mitos — нить + chondrion — зернышко, крупинка) — в большинстве случаев палочковидной формы органоиды, размером несколько мкм. Митохондрии наблюдали в световой микроскоп как самые крупные клеточные органеллы. Их содержимое — матрикс, окружено двумя мембранами. Внутренняя образует многочисленные гребневидные складки, называемые кристами (рис. 5).
Рис.5. Строение митохондрии
Митохондрии содержат мультиферментные системы, рибосомы и небольшое количество ДНК, чаще всего в виде кольцевых молекул. Они входят в состав любой клетки, по строению похожи на клетки прокариот, имеют округлую форму, а при соединении нескольких рядом могут выглядеть как нити длиной менее 1 мкм. Внутри митохондрий находятся окислительные ферменты, РНК, небольшое количество ДНК, чаще всего в виде кольцевых молекул, и рибосомы, отличающиеся от цитоплазматических.
Митохондрии называют «энергетическими станциями» клетки, так как в них образуются молекулы АТФ, аккумулирующие энергию в виде химических связей. Митохондрии способны размножаться путем деления или отшнуровывания мелких фрагментов. Количество их в клетке зависит от функционального состояния и энергетических потребностей.
Жгутики — белковые органеллы, отходящие от поверхности клетки в виде вытянутых отростков длиной 1—20 мкм. С помощью жгутика клетка перемещается в жидкой среде. Т.е. это органоиды движения
Рибосома является сложной органеллой, в которой происходит синтез белка из аминокислот. Рибосомы – это мелкие органеллы, представленные глобулярными частицами диаметром порядка 20 нм, состоящими из двух субъединиц неравного размера – большой и маленькой. Состав рибосом состоит из комплекса молекулярных белков и рибонуклеиновой кислоты (РНК), синтезируемой в ядрышке. Рибосомы могут свободно находиться в цитоплазме, либо прикрепляться к ЭР. На них происходит синтез белковых молекул.
В клетках растений имеются пластиды (хлоропласты, хромопласты и лейкопласты), которые тоже имеют двухмембранное строение, как и митохондрии.
Пластиды – органеллы, окруженные оболочкой, состоящей из двух мембран. Образуются из пропластид – мелких телец, находящихся в меристематических клетках корней и побегов. В пластидах различают более или менее развитую мембранную систему и внутреннее содержимое, представленное гомогенным веществом – строму. По типу содержащихся в них пигментов пластиды делятся на хлоропласты, хромопласты, лейкопласты.
Хлоропласты (от греч. chloros — зеленый + plastos — вылепленный, образованный) — особые органеллы в растительных клетках, в которых протекает процесс фотосинтеза (рис.6).
Рис.6. Строение хлоропласта
Пигмент, окрашивающий их в зеленый цвет и поглощающий энергию солнечного света, назван хлорофиллом (от греч. ...phyllon — лист). При его участии хлоропласты синтезируют из воды и двуокиси углерода глюкозу — основное органическое вещество, которым питается все живое. Без процесса фотосинтеза вряд ли была бы возможна жизнь. С помощью электронного микроскопа установлено, что хлоропласт окружен двойной мембранной оболочкой, как и митохондрии. В ней заключено основное вещество — строма (от греч. stroma — подстилка), заполненная множеством пластинчатых структур — ламелл, которые расположены парами, на концах слипаются и окружают каждую цистерну, в хлоропластах сильно утолщены. В строме видны и крупные белые гранулы — крахмальные зерна; значит, здесь продукт фотосинтеза — глюкоза — сразу же переводится в нерастворимый крахмал. Выяснение связи структуры хлоропластов с их функциями важно для осуществления реакции фотосинтеза «в пробирке» и возможности управлять этим процессом, что явится одним из шагов на пути избавления человечества от забот о пропитании.
Как и митохондрии, хлоропласты содержат рибосомы и собственную ДНК и обладают способностью делиться. Помимо основной функции этих пластид (осуществление фотосинтеза) они участвуют в синтезе аминокислот и жирных кислот и служат хранилищем временных запасов крахмала.
Хромопласты – пластиды, содержащие пигменты каратиноиды, придающие им красную, желтую и оранжевую окраску. Могут развиваться из хлоропластов, которые при этом теряют хлорофилл и внутренние мембрановые структуры и накапливают каратиноиды. Эти явления происходят при созревании плодов. В цветах яркая окраска хромопластов может служить для привлечения насекомых.
Лейкопласты – непигментные, и, следовательно, бесцветные пластиды. Некоторые из них синтезируют и накапливают крахмал (аминопласты), другие способны к образованию и запасанию липидов и белков (элайопласты и протеинопласты). На свету лейкопласты могут превращаться в хлоропласты.
Заключение
Клетка является структурной и функциональной единицей любого живого организма. Каждая клетка является микроносителем жизни, поскольку в ней заключена такая генетическая информация, которая достаточна для воспроизведения всего организма, причем этот носитель жизни «подчинил свою собственную свободу деятельности организма в целом».
Клетке присущи все признаки живого: обмен веществ и энергии, реагирование на внешнюю среду (саморегуляция), рост, размножение путем деления (самовоспроизведение), передача наследственных признаков, способность двигаться и в целом самоорганизация. Клетка обладает как бы полнотой свойств жизни, что позволяет ей как самостоятельной единице живого существовать и отдельно: изолированные клетки многоклеточных организмов могут жить и размножаться в питательной среде.
В природе существуют простейшие одноклеточные организмы, как животного, так и растительного свойства (амеба, инфузория, эвглена, хлорелла и др., некоторые водоросли и грибы) и многоклеточные (большинство животных и растений). Клетки всех живых организмов имеют похожий химический состав и сходное строение. Многоклеточные организмы содержат до несколько тысяч клеток и являются организованными совокупностями клеток, различных по форме, структуре и функциям, т.е. дифференцированными и дискретными системами. Однако организация клеток в организме построена по единому структурному признаку.
Итак, клетка является наименьшей, то есть элементарной живой системой, так как ей присущи все свойства живого организма, свойства жизни как явления.
Список литературы
1. Анисимов А.П. Концепции современного естествознания. Биология.-Владивосток: ТИДОТ ДВГУ, 2000 г.
2. Горбачев В.В. Концепции современного естествознания: Учеб. пособие для студентов вузов / В. В. Горбачев. — 2-е изд., испр. и доп. — М.: ООО «Издательский дом «ОНИКС 21 век»: 000 «Издательство «Мир и Образование», 2005. —672 с: ил.
3. Дубнищева Т.Я. Концепции современного естествознания: учеб. пособие для студ. вузов / Татьяна Яковлевна Дубнищева. — 6-е изд., испр. и доп. — М.: Издательский центр «Академия», 2006. — 608 с.
4. Карпенков С.Х. Концепции современного естествознания: Учеб. для вузов/С.Х. Карпенков. — 6-е изд., перераб. и доп. — М.: Высш. шк., 2003. — 488 с: ил.
5. Павлов И.Ю., Вахненко Д.В., Москвичев Д.В. Биология: учеб. пособие. - Ростов н/Д: Издательство «Феникс», 2002.- 608с.