История развития микроскопии

Автор работы: Пользователь скрыл имя, 19 Января 2011 в 21:29, реферат

Описание работы

В начале XVII века появились сложные микроскопы, составленные из двух линз. Изобретатель такого сложного микроскопа точно не известен, но многие факты говорят о том, что им был голландец Корнелий Дребель, живший в Лондоне и находившийся на службе у английского короля Иакова I. В сложном микроскопе было два стекла: одно - объектив - обращенное к предмету, другое - окуляр - обращенное к глазу наблюдателя. В первых микроскопах объективом служило двояковыпуклое стекло, дававшее действительное, увеличенное, но обратное изображение. Это изображение и рассматривалось при помощи окуляра, который играл, таким образом, роль лупы, но только лупа эта служила для увеличения не самого предмета, а его изображения.

Содержание работы

Введение……………………………………………………………….………3

1. История микроскопа…………………………………………………....….6

2. Методы световой микроскопии……………………………………….…..9

3. Методы микроскопического исследования металлов………….……….15

4. Основные типы и конструктивные особенности металлографических микроскопов…………………………………………………………………..……..20

Файлы: 1 файл

реферат Микроскоп.doc

— 99.00 Кб (Скачать файл)

     4. Основные типы и конструктивные особенности металлографических микроскопов 

     В зависимости от назначения металлографические микроскопы имеют различные пределы  увеличения и позволяют использовать те или иные виды освещения, а также некоторые специальные методы металлографического исследования. Микроскопы, предназначенные для металлографического контроля металлопродукции в заводских условиях, оценки качества приготовления микрошлифов и других рядовых работ (рабочие микроскопы), обычно позволяют наблюдать и фотографировать структуры в светлом и темном полях и в поляризованном свете при увеличении до 1000--1500. Современные исследовательские микроскопы рассчитаны на предельное (достигаемое в видимом свете) увеличение и, как правило, являются универсальными, т. е. предусматривают возможность использования всех перечисленных выше методов исследования. Кроме того, металлографические микроскопы могут быть снабжены приспособлениями для измерения микротвердости, приставками для нагрева образца в вакууме и счетными устройствами для использования методов количественной металлографии.

     Микроскоп ММР-4. Рабочий металлографический микроскоп  ММР-4 предназначен для наблюдения и  фотографирования микроструктуры металлов в светлом поле при прямом и косом освещении, темном поле, поляризованном свете и методом фазового контраста.

     В комплекте оптики микроскопа ММР-4 объективы-планахроматы смонтированы на револьверной головке 36, обеспечивающей их быструю замену. Наряду с компенсационными окулярами с увеличением 10, установленными в бинокулярной насадке 37, микроскоп снабжен панкратической системой линз, позволяющей изменять увеличение микроскопа в 2--3 раза вращением рукоятки 38 без дополнительной фокусировки. Общее увеличение микроскопа от 50 до 1500.

 

      Оптическая схема микроскопа показана на рис. 1.8, а. Свет от источника 1 (лампы  накаливания с йодным циклом типа КИМ9-75) проходит через коллектор 2 и  призмой 3 проецируется в плоскость  апертурной диафрагмы 4; далее линзой 5, зеркалом 6, линзой 7 и полупрозрачной пластинкой 8 изображение источника 1 и апертурной диафрагмы проецируется в плоскость опорного торца под объектив. Полевая диафрагма 9 помещается в фокальной плоскости второй осветительной линзы 7 и проецируется ею в бесконечность, а после объектива - в плоскость предмета. Лучи, пройдя объектив и отразившись от шлифа, вновь проходят через объектив, пластинку 8 и телеобъективом 10 собираются в промежуточной плоскости, являющейся плоскостью предмета для панкратической системы 11. Затем лучи отражаются от зеркал 13 и 14, проходят через линзы оборачивающей системы 12 и призму 15 и поступают в бинокулярную насадку 16.

     При наблюдении в темном поле вместо линзы 7 и пластинки 8 в ход лучей включаются линза 20 (кольцевая диафрагма) и кольцевое зеркало 21. При работе в поляризованном свете в ход лучей одновременно вводятся поляризатор 22 и анализатор 23.

     При использовании метода фазового контраста  в осветительную систему включается кольцевая диафрагма 17, а в систему  наблюдения - фазовая пластинка 18.

     При настройке системы фазового контраста  между линзами оборачивающей  системы включается линза Бертрана 19.

     При фотографировании в ход лучей  вместо зеркала 13 вводится зеркало 25; при  наблюдении изображения на экране 26 зеркала 13 и 25 выключаются. Изображение проецируется линзой 27 и гомалью 28 с помощью зеркал 29 и 30 на экран 26 или линзой 31 и гомалью 32 на фотопластинку 33 размерами 9X12 см или с помощью линзы 34 на пленку 35 фотоаппарата «Зоркий-4К».

     Горизонтальный  микроскоп МИМ-8м. Исследовательский микроскоп МИМ-8м дает увеличение до 1350 при визуальном наблюдении и до ~1700 при фотографировании, обеспечивая высокую четкость изображения. В микроскопе применяют ахроматические и апохроматические объективы.

     В настоящее время микроскоп МИМ-8м заменен более совершенной моделью МИМ-9. Этот микроскоп с увеличением при визуальном наблюдении от 20 до ~ 1700 позволяет использовать все виды освещения, включая фазовый и интерференционный контраст. В нем автоматизированы раздвижка меха фотокамеры и отработка экспозиции при фотографировании, а также грубая подача предметного столика.

     Микроскоп ММУ-3 К Упрощенная модель металломикроскопа  с нижним расположением предметного  столика. С его помощью можно  осуществлять визуальное наблюдение в  светлом и темном полях и поляризованном свете при увеличениях 100, 300 и 500. В микроскопе имеется переходная втулка для стандартных микрофотонасадок МФН-12 (с фотокамерой «Зоркий-4»), МФН-8 (с пластиночной фотокамерой 9X12 см) или МФН-7 (с пластиночной фотокамерой 6,5X9 см)

     Наряду  с отечественными микроскопами в  исследовательских и заводских  лабораториях широко применяются микроскопы фирмы «Karl Zeiss, Jena» (ГДР); особенно горизонтальный исследовательский микроскоп «Нео-фот-21». Этот микроскоп снабжен высококачественными объективами -- планахроматами и планапохроматами, дает увеличение от 10 до 2000 и предусматривает различные виды освещения, включая фазовый контраст, а также имеет приспособление для измерения микротвердости. Микроскоп снабжен встроенным устройством автоматического экспонирования для крупноформатной камеры (съемка на пластинки 13X18 см и 9Х Х12 см). Кроме того, возможна съемка с помощью малоформатной камеры на пленку 24X36 мм с использованием отдельного экспозиционного автоматического устройства. Дополнительные удобства работы на микроскопе: быстрый переход с одного вида освещения на другой, быстрая смена объективов с помощью механизма быстрого подъема предметного столика и возможность изменения кратности увеличения без смены окуляров посредством специального переключателя. С помощью двух сменных опак-иллюминаторов можно осуществлять наблюдение и фотографирование в светлом и темном полях при увеличениях от 10 до 50. Для облегчения металлографического контроля можно использовать дополнительное* устройство, позволяющее одновременно наблюдать исследуемый шлиф и эталонные снимки (например, соответствующие различному номеру зерна) при одинаковом увеличении и формате изображений.

     Измерение микротвердости. Дополнительные данные о природе и свойствах различных структурных составляющих сталей и сплавов получают путем измерения микротвердости. Для этой цели используют специальные приборы (обычно ПМТ-3 и ПМТ-5) или приспособления к световым микроскопам. Наиболее распространенный метод измерения микротвердости основан на измерении линейной величины диагонали отпечатка d от вдавливания алмазной пирамиды с углом между гранями 136° под нагрузкой от 0,02--2Н. В зависимости от твердости исследуемой фазы и величины нагрузки диагональ отпечатка может изменяться от нескольких до нескольких сот микрометров, что позволяет изучать структурные составляющие размером до ~ 10 мкм.

     Величину  нагрузки при измерении микротвердости выбирают, исходя из размеров изучаемых  структурных составляющих. Для правильного  испытания необходимо, чтобы рас стояние между отпечатками и от края отпечатка до границы зерна или частицы было не менее 2d, что ограничивает размер отпечатка (величину нагрузки). Однако в том случае, если испытуемая фаза находится в матрице с близкими механическими свойствами, допускается большая величина отпечатка, так как следует учитывать, что с уменьшением нагрузки микротвердость обычно повышается, особенно в интервале нагрузок ниже 0,2Н (это может существенно снизить точность измерений).

     На  микротвердость металлов и сплавов могут в значительной мере влиять такие факторы, как подготовка поверхности образца, анизотропия свойств материала и микронеоднородность структуры, связанная, например, с ликвацией или неравномерной степенью деформации различных зерен. Для исключения влияния наклепа поверхностного слоя шлифа, особенно в случае сравнительно мягких материалов, следует применять электролитическое полирование образцов.

     Анизотропия механических свойств кристаллов может  приводить к неодинаковой величине отпечатков на различно ориентированных по отношению к плоскости шлифа кристаллитах, к различию диагоналей одного и того же отпечатка и к неодинаковой степени изогнутости различных сторон отпечатка. При количественном изучении отклонений отпечатков от правильной квадратной формы можно получить важную информацию об анизотропии пластической деформации кристаллов.

     Применение  метода измерения микротвердости в  металловедческих исследованиях связано  в основном с проблемами оценки свойств  и идентификации отдельных фаз  и структурных составляющих, имеющих малый объем. Этот метод широко используют при исследовании поверхностных покрытий и слоев, а также влияния различной механической, термической или химико-термической обработки на поверхностные свойства материалов. При изудиффузии, взаимодействия металлов с различными средами, ликвации и других процессов. 

Информация о работе История развития микроскопии