История и методология генетики и селекции

Автор работы: Пользователь скрыл имя, 30 Ноября 2010 в 17:35, Не определен

Описание работы


1. Введение
2. История развития генетики
3. Современные методы генетики
4. История развития селекции.
5. Направления и методы селекции
6. Заключение
7. Список литературы

Файлы: 1 файл

История и методология генетики и селекции.doc

— 132.50 Кб (Скачать файл)

  В 1900 г. независимо друг от друга К. Корренс  в Германии, Г. де Фриз в Голландии и Э. Чермак в Австрии обнаружили в своих опытах открытые ранее закономерности и, натолкнувшись на его работу, вновь опубликовали её в 1901 г. Эта публикация вызвала глубокий интерес к количественным закономерностям наследственности. Цитологи обнаружили материальные структуры, роль, и поведение которых могли быть однозначно связаны с менделевскими закономерностями. Такую связь усмотрел в 1903 г. В. Сэттон - молодой сотрудник известного американского цитолога Э. Вильсона. Гипотетические представления о наследственных факторах, о наличии одинарного набора факторов в гаметах, и двойного - в зиготах получили обоснование в исследованиях хромосом. Т. Бовери (1902) представил доказательства в пользу участия хромосом в процессе наследственной передачи, показав, что нормальное развитие морского ежа возможно только при наличии всех хромосом. Установлением того факта, что именно хромосомы несут наследственную информацию, Сэттом и Бровери положили начало новому направлению генетики - хромосомной теории наследственности.

  После переоткрытия менделеевских закономерностей развернулось изучение этих закономерностей у всевозможных видов животных и растений. В 1909 г. к детальному изучению этого вопроса приступил Т. Г. Морган. Прежде всего, он четко сформулировал исходную гипотезу. На вопрос, всегда ли будут выполняться численные закономерности, установленные Менделем, Мендель совершенно справедливо считал, что такие закономерности верны только тогда, когда изучаемые факторы будут комбинироваться при образовании зигот независимо друг от друга. Но так как число хромосом по сравнению с количеством генов невелико, то следовало ожидать, что гены, расположенные в одной хромосоме, будут переходить из гамет в зиготы совместно. Следовательно, соответствующие признаки будут наследоваться группами.

  Проверку  это предположения осуществил Морган и его сотрудники К. Бриджес и А. Стертевант в исследованиях с дрозофилой. Выбор этого объекта по многим причинам можно считать крупной удачей, так как дрозофила имеет небольшой период развития , обладает высокой плодовитостью и имеет всего четыре пары хромосом. Вскоре у дрозофилы было обнаружено большое количество разнообразных мутаций, т.е. форм, характеризующихся различными наследственными признаками. Это позволило Моргану приступить к генетическим опытам. Он доказал, что гены, находящиеся в одной хромосоме, передаются при скрещивании совместно. Одна группа сцепления генов расположена в хромосоме. Веское подтверждение гипотезы о сцеплении генов в хромосомах Морган получил при изучении так называемого сцепленного с полом наследия.

  Благодаря цитолого-генетическим экспериментам (А. Стертеванта, К. Бриджеса, Г. Дж. Меллера,1910) удалось установить участие некоторых хромосом в определении пола. Половые хромосомы оказались двух типов: Х-хромосомы, Y-хромосомы. Сочетание двух X-хромосом приводит к формированию женского пола, а одной X-хромосомы и Y-хромосомы дает начало мужской особи, такое сочетание присуще большинству млекопитающих( в том числе человек), амфибиям, растениям, рыбам. Проследив за поведением генов в потомстве определенных самцов и самок, Морган получил убедительное подтверждение предположения о сцеплении генов.

  Таким образом, в развитии генетики выделяются два важных этапа. Первый этап, базирующийся на гибридологических исследованиях, связан с открытием Менделя. Второй, связанный с успехами цитологических исследований, завершился доказательством того, что носителями наследственных факторов являются хромосомы. Морган сформулировал и экспериментально доказал положение о сцеплении генов в хромосомах.

Современные методы генетики

  Совокупность  методов исследования наследственных свойств организма (его генотипа) называется генетическим анализом. В зависимости от задачи и особенностей изучаемого объекта генетический анализ проводят на популяционном, организменном, клеточном и молекулярном уровнях.

  1. Генеалогический метод.

  Генеалогический метод заключается в анализе  родословных и позволяет    определить   тип   наследования   (доминантный, рецессивный, аутосомный или сцепленный с полом) признака, а также его моногенность или полигенность. На основе полученных сведений прогнозируют вероятность проявления изучаемого признака в потомстве, что имеет большое значение для предупреждения наследственных заболеваний.

  При аутосомном наследовании признак характеризуется равной вероятностью проявления у лиц обоих полов. Различают аутосомно-доминантное и аутосомно-рецессивное наследование.

  При аутосомно-доминантном наследовании доминантный аллель реализуется  в признак, как в гомозиготном, так и в гетерозиготном состоянии. При наличии хотя бы у одного родителя доминантного признака последний с разной вероятностью проявляется во всех последующих поколениях. Однако для доминантных мутаций характерна низкая пенетрантность. В ряде случаев это создает определенные трудности для определения типа наследования.

  При аутосомно-рецессивном наследовании рецессивный аллель реализуется  в признак в гомозиготном состоянии. Рецессивные заболевания у детей  встречаются чаще при браках между  фенотипически нормальными гетерозиготными  родителями. У гетерозиготных родителей (Аа х Аа) вероятность рождения больных детей (аа) составит 25%, такой же процент (25%) буду здоровы (АА), остальные 50% (Аа) будут также здоровы, но окажутся гетерозиготными носителями рецессивного аллеля. В родословной при аутосомно-рецессивном наследовании заболевание может проявляться через одно или несколько поколений.

  Интересно отметить, что частота появления  рецессивного потомства значительно  повышается при близкородственных  браках, так как концентрация гетерозиготного носительства у родственников значительно превышает таковую в общей массе населения.

  Сцепленное  с полом, наследование характеризуется, как правило, неравной частотой встречаемости признака у индивидуумов разного пола и зависит от локализации соответствующего гена в Х - или Y-хромосоме. В X- и Y-хромосомах человека имеются гомологичные участки, содержащие парные гены. Гены, локализованные в гомологичных участках, наследуются так же, как и любые другие гены, расположенные в аутосомах. По-видимому, негомологичные гены имеются и в Y-хромосоме. Они передаются от отца к сыну и проявляются только у мужчин (голандрический тип наследования).

  У человека в Y-хромосоме находится  ген, обусловливающий дифференцировку  пола. В Х-хромосоме имеется два  негомологичных участка, содержащих около 150 генов, которым нет аллельных в Y-хромосоме. Поэтому вероятность проявления рецессивного аллеля у мальчиков более высока, чем у девочек. По генам, локализованным в половых хромосомах, женщина может быть гомозиготной или гетерозиготной. Мужчина, имеющий только одну Х-хромосому, будет гемизиготным по генам, которым нет аллелей в Y-хромосоме.

  Наследование, сцепленное с Х-хромосомой, может  быть доминантным и рецессивным ( чаще рецессивным). Рассмотрим Х - сцепленное рецессивное наследование на примере такого заболевания человека, как гемофилия (нарушение свертывания крови). Известный всему мипу пример: носитель гемофилии королева Виктория была гетерозиготной и передала мутантный ген сыну Леопольду и двум дочерям. Эта болезнь проникла в ряд королевских домов Европы и попала в Россию.

  1. Популяционный метод.

  Методы  генетики популяций широко применяют  в исследованиях человека. Внутрисемейный анализ заболеваемости неотделим от изучения наследственной патологии, как в отдельных странах, так и в относительно изолированных группах населения. Изучение частоты генов и генотипов в популяциях составляет предмет популяционно-генетического исследования. Это дает информацию о степени гетерозиготности и полиморфизма человеческих популяций, выявляет различия частот аллелей между разными популяциями.

  Считают, что закон Харди — Вайнберга  свидетельствует о том, что наследование как таковое не меняет частоты  аллелей в популяции. Этот закон  вполне пригоден для анализа крупных  популяций, где идет свободное скрещивание. Сумма частот аллелей одного гена, согласно формуле Харди — Вайнберга р+q=1, в генофонде популяции является величиной постоянной. Сумма частот генотипов аллелей данного гена p2+2pq+q2=1  также величина постоянная. При полном доминировании, установив в данной популяции число рецессивных гомозигот (q2 — число гомозиготных особей по рецессивному гену с генотипом аа), достаточно извлечь квадратный корень из полученной величины, и мы найдем частоту рецессивного аллеля а. Частота доминантного аллеля А составит р = 1 - q. Вычислив таким образом частоты аллелей а и А, можно определить частоты соответствующих генотипов в популяции (р2=АА; 2рq=Аа). Например, по данным ряда ученых, частота альбинизма (наследуется как аутосомный рецессивный признак) составляет 1:20 000 (q2). Следовательно, частота аллеля a в генофонде будет q2=l/20000 = /l4l и тогда частота аллеля А будет p=1-q. p=1. p=1 – 1/141=140/141. В этом случае частота гетерозиготных носителей гена альбинизма (2pq) составит 2(140/141) x (1/141) = 1/70, или 1,4%

  Статистический  анализ распространения отдельных  наследственных признаков (генов) в  популяциях людей в разных странах  позволяет определить адаптивную ценность конкретных генотипов. Однажды возникнув, мутации могут передаваться потомству  на протяжении многих поколений. Это приводит к полиморфизму (генетической неоднородности) человеческих популяций. Среди населения Земли практически невозможно (за исключением однояйцевых близнецов) найти генетически одинаковых людей. В гетерозиготном состоянии в популяциях находится значительное количество рецессивных аллелей (генетический груз), обусловливающих развитие различных наследственных заболеваний. Частота их возникновения зависит от концентрации рецессивного гена в популяции и значительно повышается при заключении близкородственных браков.

  1. Близнецовый метод.

  Этот  метод используют в генетике человека для выяснения степени наследственной обусловленности исследуемых признаков. Близнецы могут быть однояйцевыми (образуются на ранних стадиях дробления зиготы, когда из двух или реже из большего числа бластомеров развиваются полноценные организмы). Однояйцевые близнецы генетически идентичны. Когда созревают и затем оплодотворяются разными сперматозоидами две или реже большее число яйцеклеток, развиваются разнояйцевые близнецы. Разнояйцевые близнецы сходны между собой не более чем братья и сестры, рожденные в разное время. Частота появления близнецов у людей составляет около 1% ( 1/3 однояйцевых, 2/3 разнояйцевых); подавляющее большинство близнецов является двойнями.

  Так как наследственный материал однояйцевых близнецов одинаков, то различия, которые возникают у них, зависят от влияния среды на экспрессию генов. Сравнение частоты сходства по ряду признаков пар одно- и разнояйцевых близнецов позволяет оценить значение наследственных и средовых факторов в развитии фенотипа человека.

  1. Цитологический метод.

  Цитогенетический  метод используют для изучения нормального  кариотипа человека, а также при  диагностике наследственных заболеваний, связанных с геномными и хромосомными мутациями.

  Кроме того, этот метод применяют при  исследовании мутагенного действия различных химических веществ, пестицидов, инсектицидов, лекарственных препаратов и т.д.

  В период деления клеток на стадии метафазы хромосомы имеют более четкую структуру и доступны для изучения. Диплоидный набор человека состоит  из 46 хромосом:

22 пар  аутосом и одной пары половых хромосом (XX — у женщин, XY — у мужчин). Обычно исследуют лейкоциты периферической крови человека, которые помещают в специальную питательную среду, где они делятся. Затем готовят препараты и анализируют число и строение хромосом. Разработка специальных методов окраски значительно упростила распознавание всех хромосом человека, а в совокупности с генеалогическим методом и методами клеточной и генной инженерии дала возможность соотносить гены с конкретными участками хромосом. Комплексное применение этих методов лежит в основе составления карт хромосом человека.

  Цитологический  контроль необходим для диагностики хромосомных болезней, связанных с ансуплоидией и хромосомными мутациями. Наиболее часто встречаются болезнь Дауна (трисомия по 21-й хромосоме), синдром Клайнфелтера (47 XXY), синдром Шершевского — Тернера (45 ХО) и др. Потеря участка одной из гомологичных хромосом 21-й пары приводит к заболеванию крови — хроническому миелолейкозу.

  При цитологических исследованиях интерфазных ядер соматических клеток можно обнаружить так называемое тельце Барри, или половой хроматин. Оказалось, что половой хроматин в норме есть у женщин и отсутствует у мужчин. Он представляет собой результат гетерохроматизации одной из двух Х-хромосом у женщин. Зная эту особенность, можно идентифицировать половую принадлежность и выявлять аномальное количество Х-хромосом.

  Выявление многих наследственных заболеваний возможно еще до рождения ребенка. Метод пренатальной диагностики заключается в получении околоплодной жидкости, где находятся клетки плода, и в последующем   биохимическом   и цитологическом определении возможных наследственных аномалий. Это позволяет поставить диагноз на ранних  сроках   беременности  и принять решение о се продолжении или прерывании.

Информация о работе История и методология генетики и селекции