Искусственный и естественный отбор. Энергетический обмен клетки

Автор работы: Пользователь скрыл имя, 30 Октября 2009 в 14:00, Не определен

Описание работы

1. Искусственный отбор
2. Естественный отбор
3. Половой отбор
4. Сходства и различия между естественным и искусственным отбором
5. Энергетический обмен клетки

Файлы: 1 файл

реферат.doc

— 121.50 Кб (Скачать файл)

     У растительных клеток и у некоторых дрожжевых грибов распад глюкозы осуществляется путем спиртового брожения. Спиртовое брожение, как и гликолиз, представляет длинный ряд ферментативных реакций, причем большая часть реакций гликолиза и спиртового брожения полностью совпадают, и только на самых последних этапах есть некоторые различия. В ряде промежуточных реакций спиртового брожения, как и при гликолизе, принимают участие Н3РО4 и АДФ. Конечными продуктами спиртового брожения являются двуокись углерода, этиловый спирт, АТФ и вода. Суммарное уравнение спиртового брожения следует записать так:

     С6Н12О6+2Н3РО4+2АДФ = 2СО2+2С2Н5ОН+2АТФ+2Н2О

     Из  приведенных уравнений гликолиза  и спиртового брожения видно, что  в этих процессах не участвует  кислород, поэтому их называют бескислородными, или с неполным расщеплением, так как полное расщепление - это расщепление до конца, т. е. превращение глюкозы в простейшие соединения - СО2 и Н2О, что соответствует уравнению

     С6Н12О6+6О2= 6СО2+6Н2О

     Наконец, и это особенно важно, из уравнений следует, что при распаде одной молекулы глюкозы в ходе гликолиза и спиртового брожения образуются две молекулы АТФ. Следовательно, распад глюкозы в процессе гликолиза и спиртового брожения сопряжен с синтезом универсального энергетического вещества АТФ.

     Так как синтез АТФ представляет эндотермический  процесс, то, очевидно, энергия для  синтеза АТФ черпается за счет энергии реакций бескислородного  расщепления глюкозы. Следовательно, энергия, освобождающаяся в ходе реакций гликолиза, не вся переходит  в тепло. Часть ее идет на синтез двух богатых энергией фосфатных связей.

     Произведем  несложный расчет: всего в ходе бескислородного расщепления грамм-молекулы глюкозы, освобождается 200 кдж (50 ккал). На образование одной связи, богатой  энергией, при превращении грамм-молекулы АДФ и АТФ затрачивается 40 кдж (10 ккал).

     В ходе бескислородного расщепления  образуются две такие связи. Таким  образом, в энергию двух грамм-молекул  АТФ переходит 2Х40=80 кдж (2Х10=20 ккал). Итак, из 200 кдж (50 ккал) только 80 кдж (20 ккал) сберегаются в виде АТФ, а 120 кдж (30 ккал) рассеиваются в виде тепла. Следовательно, в ходе бескислородного расщепления глюкозы 40% энергии сберегается клеткой.

     3) Кислородный или полный (аэробное дыхание) — продукты, возникшие в предшествующей стадии, окисляются до конца, т. е. до СО2 и Н2О.

     Основное  условие осуществления этого  процесса - наличие в окружающей среде кислорода и поглощение его клеткой. Стадия кислородного расщепления, как и предыдущая стадия бескислородного  расщепления, представляет собой ряд последовательных ферментативных реакций. Каждая реакция катализируется особым ферментом.

     Весь  ферментативный ряд кислородного расщепления  сосредоточен в митохондриях, где  ферменты расположены на мембранах  правильными рядами. Сущность каждой из реакций состоит в окислении органической молекулы, которая с каждой ступенью постепенно разрушается и превращается в конечные продукты окисления - СО2 и Н2О.

     Все промежуточные реакции кислородного расщепления, как и промежуточные  реакции бескислородного процесса, идут с освобождением энергии. Количество энергии, освобождаемой на каждой ступени при кислородном процессе, много больше, чем на каждой ступени бескислрородного процесса. В сумме кислородное расщепление дает громадную величину - 2600 кдж (650 ккал). Если бы вся эта энергия освободилась в результате одной реакции, клетка подверглась бы тепловому повреждению. При рассредоточении процесса на ряд промежуточных звеньев такой опасности нет.

     Подробное исследование реакций кислородного расщепления показало, что в этих реакциях, как и в реакциях бескислородного процесса, принимает участие Н3РО4 и АДФ и что кислородный процесс, как и бескислородный, сопряжен с синтезом АТФ. В ходе кислородного расщепления двух трехуглеродных молекул происходит образование 36 молекул АТФ - 36 богатых энергией фосфатных связей. Таким образом, суммарное уравнение кислородного процесса можно записать так:

     3Н6О3+6О2+36Н3РО4+36АДФ = 6СО2+6Н2О+36АТФ+36Н2О,

     а суммарное уравнение полного  расщепления глюкозы так:

     С6Н12О6+6О2+38Н3РО4+38АДФ =6СО2+6Н2О+38АТФ+38Н2О

     Теперь  должно быть ясно значение для клетки третьей, кислородной стадии энергетического  обмена. Если в ходе бескислородного  расщепления освобождается 200 кдж/моль (50 ккал/моль) глюкозы, то в стадии кислородного процесса освобождается 2600 кдж (650 ккал), т. е. в 13 раз больше. Если в ходе бескислородного расщепления синтезируются две молекулы АТФ, то в кислородную стадию их образуется 36, т. е. в 18 раз больше. Иными словами, в ходе расщепления глюкозы в клетке на стадии кислородного процесса освобождается и преобразуется в другие формы энергии свыше 90% энергии глюкозы.

     Займемся  снова расчетом. Всего в процессе расщепления глюкозы до СО2 и Н2О, т. е. в ходе кислородного и бескислородного процессов, синтезируется 2+36=38 молекул АТФ. Таким образом, в потенциальную энергию АТФ переходит 38 Х 40=1520 кдж (38 Х 10 = 380 ккал). Всего при расщеплении глюкозы (в бескислродную и кислородную стадии) освобождается 200+2600=2800 кдж (50+650 = 700 ккал). Следовательно, почти 55% всей энергии, освобождаемой при расщеплении глюкозы, сберегается клеткой в форме АТФ. Остальная часть (45%) рассеивается в виде тепла. Чтобы оценить значение этих цифр, вспомним, что в паровых машинах из энергии, освобождаемой при сгорании угля, в полезную форму преобразуется не более 12 - 15%. В двигателях внутреннего сгорания он достигает примерно 35%. Таким образом, по эффективности преобразования энергии живая клетка превосходит все известные преобразователи энергии в технике.

     При сопоставлении количества энергии, освобождаемой в ходе бескислородного и кислородного расщепления глюкозы, а также числа молекул АТФ, синтезируемых в обе стадии, видно, что кислородный процесс несравненно более эффективен, чем бескислородный. Вполне понятно поэтому, что в нормальных условиях для мобилизации энергии в клетке всегда используется как бескислородный, так и кислородный путь расщепления. Если осуществление кислородного процесса затруднено или вовсе невозможно, например при недостатке кислорода, тогда для поддержания жизни остается только бескислородный процесс. Но при этом для получения АТФ в количестве, необходимом для жизнедеятельности, клетке приходится расщеплять очень большое количество глюкозы. 

     Заключение. Сущность процесса, обозначаемого термином "отбор", сводится к тому, что в ряду последовательных поколений животных или растений данного вида известные признаки постепенно усиливаются вследствие того, что в силу естественных условий (отбор естественный) или вследствие деятельности человека (отбор искусственный) размножаются исключительно или преимущественно те именно особи вида, у которых данные признаки развиты сильнее, между тем как особи, не представляющие этих особенностей, в силу тех или иных естественных или искусственных условий устраняются в большей или меньшей степени от размножения. Отбор искусственный в обширных размерах применяется в скотоводстве и птицеводстве и в руках опытных специалистов дает поразительные результаты. Механизм отбора может включиться лишь при наличии некоторого спектра вариаций (фактор изменчивости).

     Естественный  отбор является фактором преимущественно  отрицательным: все то, что менее  приспособлено к внешним условиям, гибнет, уступая место более приспособленным  организмам. Что же касается роли естественного  отбора в создании тех первоначальных различий между особями, тех уклонений, которые, постепенно накопляясь и усиливаясь в процессе отбора, ведут к выработке новых разновидностей, видов, родов и т. д., то взгляды натуралистов на этот вопрос сильно расходятся. По мнению одних, источником вариаций являются влияния внешних условий непосредственно или посредственно на организмы; это влияние вызывает изменения, которые и передаются по наследству, между тем как естественный отбор постоянно уничтожает все те формы, которые в том или ином отношении менее других пригодны для жизненной конкуренции; но при этом известные изменения внешних условий могут и сами по себе вести к появлению новых форм, действуя непосредственно на все особи (такого взгляда держался Ч. Дарвин). По мнению других (крайним представителем этого направления является        А. Вейсман), изменения, вызванные внешними влияниями на данный организм, вовсе не передаются или передаются лишь в исключительных условиях по наследству; источником вариаций является, по этому взгляду, половое размножение, благодаря которому комбинируются признаки обоих родителей, а затем роль фактора, вырабатывающего новые формы, играет исключительно отбор. Еще один спорный вопрос, связанный с борьбою за существование и естественным отбором, заключается в том, в какой мере необходимо для происхождения новых разновидностей и видов изолирование измененных форм от неизмененных. По мнению одних, образование новых разновидностей и видов может происходить без всякого изолирования; действие естественного отбора обусловливает накопление ряда изменений в том или ином направлении, и путем вымирания форм менее специализированных получаются на место одной разные формы. По мнению других, изоляция, безусловно, необходима и известные изменения лишь в том случае имеют шансы накапливаться, суммироваться, если за возникновением изменений особи, представляющие их, будут изолированы от остальных, переселятся, мигрируют (миграционная теория М. Вагнера). Наконец, некоторые высказываются в том смысле, что изменение внешних условий вызывает те или иные изменения в организмах и действием отбора изменения эти суммируются и ведут к тому, что последовательные поколения все более и более удаляются от первоначальной формы, но в пределах их не происходит образования различных форм: медленно и непрерывно изменяется при таких условиях вся масса особей данного вида, но из одного вида не произойдет двух или более иначе, как в том случае, когда часть особей первоначальной формы будет так или иначе обособлена от остальной и поставлена в иные условия; в этом случае обе части особей данного вида (понятно, что их может быть и несколько) будут развиваться не в одном направлении и послужат источником образования разных видов из одного первоначального.

     Во  второй части реферата говорилось об энергетическом обмене клетки.

     Энергетический обмен — совокупность реакций окисления органических веществ в клетке, синтеза молекул АТФ за счет освобождаемой энергии. Значение энергетического обмена — снабжение клетки энергией, которая необходима для жизнедеятельности.

     Этапы энергетического обмена: подготовительный, бескислородный, кислородный:

     АТФ представляет единый и универсальный  источник энергии для функциональной деятельности клетки. Отсюда понятно, что возможна передача энергии из одних частей клетки в другие и  заготовка энергии впрок. Синтез АТФ может происходить в одном месте клетки и в одно время, а использоваться она может в другом месте и в другое время. 
 

 

      Список используемой литературы: 

     
  1. Блиновская  Ю.В., Давыдова А.И. Эволюция клетки. М., 1994
  2. Бохински Р. Современные воззрения в биохимии. М. 1987.
  3. Де Дюв К. Путешествие в мир клетки. М., 1987.
  4. Лемеза Н. А., Камлюк Л. В., Лисов Н. Д. Пособие по биологии для поступающих в ВУЗы. М.
  5. Маргелис Л. Роль симбиоза в эволюции клетки. М., 1983.
  6. Саламатова Т.С. Физиология растительной клетки. Л., 1983.
  7. Судиьна Е.Г., Лозовая Г.И. Основы эволюционной биохимии растений. Киев, 1982.

Информация о работе Искусственный и естественный отбор. Энергетический обмен клетки