Автор работы: Пользователь скрыл имя, 20 Марта 2011 в 14:19, реферат
Присматриваясь к окружающему нас миру, мы отмечаем великое разнообразие живых существ – от растений до животных. Под этим кажущимся разнообразием в действительности скрывается удивительное единство живых клеток – элементов, из которых собран любой организм и взаимодействием которых определяется его гармоничное существование.
1.Введение
2.Структура ДНК
3.Состав ДНК
4.Макромолекулярная структура ДНК
4.1 Выделение дезоксирибонуклеиновых кислот
4.2 Фракционирование
5.Функции ДНК
6.Межнуклеотидные связи
6.1 Межнуклеотидная связь в ДНК
7. Матричный синтез ДНК
7.1 ДНК-полимеразы
7.2 Инициация цепей ДНК
7.3 Расплетение двойной спирали ДНК
7.4Прерывистый синтез ДНК
7.5 Кооперативное действие белков репликационной вилки
8. Заключение
9.Использованные источники
Из данных гидролиза
ДНК фосфодиэстеразами
Таким образом, было убедительно доказано, что в ДНК межнуклеотидная связь осуществляется за счет фосфатной группы, а также 3'- и 5'-гидроксильных групп нуклеозидных остатков [(а) и (б) — направления расщепления полинуклеотидной цепи ДНК фосфодиэстеразами соответственно змеиного яда и селезенки или микрококков]:
Предположение
о возможности иного строения
полимера с регулярно перемежающимися
связями нуклеозидных остатков по типу
3'—3' и 5'—5' было отвергнуто, так как
оно не удовлетворяло всем экспериментальным
данным. Так, полимер такого типа не должен
был бы полностью гидролизоваться (до
мономеров) в присутствии ФДЭ змеиного
яда, избирательно расщепляющей только
алкиловые эфиры нуклеозид-5' –фосфатов.
То же можно сказать о ФДЭ селезенки, селективно
гидролизирующей алкиловые эфиры нуклеозид-3'-фосфатов.
Способность клеток поддерживать высокую упорядоченность своей организации зависит от генетической информации, которая сохраняется в форме дезоксирибонуклеиновой кислоты (ДНК). ДНК - это вещество, из которого состоят гены. Размножение живых организмов, передача наследственных свойств из поколения в поколение и развитие многоклеточного организма из оплодотворенной яйцеклетки возможны потому, что ДНК способна к самовоспроизведению. Сам процесс самовоспроизведения ДНК называется репликацией. Иногда используют также название-синоним - редупликация.
Как известно, генетическая информация записана в цепи ДНК в виде последовательности нуклеотидных остатков, содержащих одно из четырех гетероциклических оснований: аденин (A), гуанин (G), цитозин (C) и тимин (T). Предложенная Дж. Уотсоном и Ф. Криком в 1953 году модель строения ДНК в форме регулярной двойной спирали сразу же позволила понять принцип удвоения ДНК. Информационное содержание обеих цепей ДНК идентично, так как каждая из них содержит последовательность нуклеотидов, строго соответствующую последовательности другой цепи. Это соответствие достигается благодаря наличию водородных связей между направленными навстречу друг другу основаниями двух цепей - попарно G и C или A и T. Описывая это свойство двойной спирали, молекулярные биологи говорят, что цепи ДНК комплементарны за счет образования уотсон-криковских пар GРC и AРT.
Поскольку две цепи имеют противоположную направленность, их называют антипараллельными. Легко представить, что удвоение ДНК происходит вследствие того, что цепи расходятся, а потом каждая цепь служит матрицей, на которой собирается комплементарная ей новая цепь ДНК. В результате образуются две дочерние, двуспиральные, неотличимые по строению от родительской ДНК молекулы. Каждая из них состоит из одной цепи исходной родительской молекулы ДНК и одной вновь синтезированной цепи. Такой механизм репликации ДНК, при котором от одного поколения к другому передается одна из двух цепей, составляющих родительскую молекулу ДНК, получил название полуконсервативного и был экспериментально доказан в 1958 году М. Мезельсоном и Ф. Сталь.
Кроме того, ситезу ДНК характерны такие свойства, как антипараллельность и униполярность. Каждая цепь ДНК имеет определенную ориентацию. Один конец несет гидроксильную группу (ОН), присоединенную к 3'-углероду в сахаре дезоксирибозе, на другом конце цепи находится остаток фосфорной кислоты в 5'-положении сахара. Две комплементарные цепи в молекуле ДНК ориентированы в противоположных направлениях - антипараллельно (при параллельной ориентации напротив 3'-конца одной цепи находился бы 3'-конец другой). Ферменты, синтезирующие новые нити ДНК, называемые ДНК-полимеразами, могут передвигаться вдоль матричных цепей лишь в одном направлении - от их 3'-концов к 5'-концам. При этом синтез комплементарных нитей всегда ведется в 5' 3' направлении, то есть униполярно. Поэтому в процессе репликации одновременный синтез новых цепей идет антипараллельно.
ДНК-полимеразы
могут давать "задний ход", то есть
двигаться в направлении 3' 5'. В
том случае, когда последнее добавленное
при синтезе нуклеотидное звено
оказалось некомплементарным
7.1
ДНК-полимеразы
В 1957 году А. Корнберг обнаружил у кишечной палочки фермент, катализирующий процесс полимеризации ДНК из нуклеотидов; он был назван ДНК-полимеразой. Затем ДНК-полимеразы выявили и в других организмах. Было показано, что субстратами всех этих ферментов служат дезоксирибонуклеозидтрифосфаты (дНТФ), полимеризующиеся на одноцепочной ДНК-матрице. ДНК-полимеразы последовательно наращивают одноцепочную цепь ДНК, шаг за шагом присоединяя к ней следующие звенья в направлении от 5-' к 3'-концу, причем выбор очередного дНТФ диктуется матрицей. Присоединение каждого нового нуклеотидного остатка к 3'-концу растущей цепи сопровождается гидролизом богатой энергией связи между первым и вторым фосфатными остатками в дНТФ и отщеплением пирофосфата, что делает реакцию в целом энергетически выгодной.
В
клетках обычно присутствует несколько
типов ДНК-полимераз, выполняющих различные
функции и имеющих разное строение. Они
могут быть построены из различного количества
белковых цепей (субъединиц), от одной
до десятков, однако все они работают на
любых последовательностях нуклеотидов
матрицы. Задача этих ферментов - сделать
точную копию каждой матрицы.
7.2
Инициация цепей
ДНК
ДНК-полимеразы не могут начинать синтеза ДНК на матрице, а способны только добавлять новые дезоксирибонуклеотидные звенья к 3'-концу уже имеющейся полинуклеотидной цепи. Такую заранее образованную цепь, к которой добавляются нуклеотиды, называют затравкой. Короткую РНК- затравку синтезирует из рибонуклеозидтрифосфатов фермент, не обладающий корректирующей активностью и называемый ДНК-праймазой (от англ. primer - затравка). Праймазная активность может принадлежать либо отдельному ферменту, либо одной из субъединиц ДНК-полимеразы. Затравка, синтезированная этим неточным ферментом, не умеющим исправлять ошибки, отличается от остальной новосинтезированной цепи ДНК, поскольку состоит из рибонуклеотидов, и далее может быть удалена.
Размер рибонуклеотидной затравки невелик (менее 20 нуклеотидов) в сравнении с размером цепи ДНК, образуемой ДНК-полимеразой. Выполнившая свою функцию РНК-затравка удаляется специальным ферментом, а образованная при этом брешь заделывается ДНК-полимеразой, использующей в качестве затравки 3'-ОН-конец соседнего фрагмента. Удаление крайних РНК-праймеров, комплементарных 3'-концам обеих цепей линейной материнской молекулы ДНК, приводит к тому, что дочерние цепи оказываются короче на 10-20 нуклеотидов (у разных видов размер РНК-затравок различен). В этом заключается так называемая "проблема недорепликации концов линейных молекул". В случае репликации кольцевых бактериальных ДНК этой проблемы не существует, так как первые по времени образованиЯ РНК-затравки удаляются ферментом, который одновременно заполняет образующуюся брешь путем наращивания 3'-ОН-конца растущей цепи ДНК, направленной в "хвост" удаляемому праймеру. Проблема недорепликации 3'-концов линейных молекул ДНК решается эукариотическими клетками с помощью специального фермента - теломеразы. В 1985 году он был обнаружен у равноресничной инфузории Tetrahymena thermophila, а впоследствии - в дрожжах, растениях и животных, в том числе в яичниках человека.
Теломераза является ДНК-полимеразой, достраивающей 3'-концы линейных молекул ДНК хромосом короткими (6-8 нуклеотидов) повторяющимися последовательностями (у позвоночных TTAGGG). Согласно номенклатуре, этот фермент называют ДНК- нуклеотидилэкзотрансферазой или теломерной терминальной трансферазой. Помимо белковой части теломераза содержит РНК, выполняющую роль матрицы для наращивания ДНК повторами. Длина теломеразной РНК колеблется от 150 нуклеотидов у простейших до 1400 нуклеотидов у дрожжей, у человека - 450 нуклеотидов. Сам факт наличия в молекуле РНК последовательности, по которой идет матричный синтез куска ДНК, позволяет отнести теломеразу к своеобразной обратной транскриптазе, то есть ферменту, способному вести синтез ДНК по матрице РНК.
В результате того что после каждой репликации дочерние цепи ДНК оказываются короче материнских на размер первого РНК-праймера (10-20 нуклеотидов), образуются выступающие однонитевые 3'-концы материнских цепей. Они-то и узнаются теломеразой, которая последовательно наращивает материнские цепи (у человека на сотни повторов), используя 3'-ОН-концы их в качестве затравок, а РНК, входящую в состав фермента, в качестве матрицы. Образующиеся длинные одноцепочные концы, в свою очередь, служат матрицами для синтеза дочерних цепей по традиционному репликативному механизму.
Постепенное
укорочение ДНК хромосом во время
репликации является одной из теорий
"старения" клеточных колоний.
Еще в 1971 году отечественный ученый
А.М. Оловников в своей теории
маргинотомии (от лат. marginalis -краевой, tome
- сечение) предположил, что это явление
лежит в основе ограниченного потенциала
удвоения, наблюдаемого у нормальных соматических
клеток. Американский ученый Леонард Хейфлик
в начале 60-х годов показал, что если для
культивирования взять клетки новорожденных
детей, то они могут пройти 80-90 делений,
в то время как соматические клетки от
70-летних делятся только 20- 30 раз. Ограничение
на число клеточных делений и называют
лимитом Хейфлика.
7.3
Расплетение двойной
спирали ДНК
Поскольку синтез ДНК происходит на одноцепочечной матрице, ему должно предшествовать обязательное разделение (хотя бы на время) двух цепей ДНК. Исследования, проведенные в начале 60-х годов на реплицирующихся хромосомах, выявили особую, четко ограниченную область репликации, перемещающуюся вдоль родительской спирали ДНК и характеризующуюся местным расхождением двух ее цепей. Эта активная область из-за своей Y-образной формы была названа репликационной вилкой. Именно в ней ДНК-полимеразы синтезируют дочерние молекулы ДНК.
С
помощью электронной
Двойная спираль ДНК весьма стабильна; для того чтобы она раскрылась, необходимы особые белки. Специальные ферменты ДНК-хеликазы быстро движутся по одиночной цепи ДНК, используя для перемещения энергию гидролиза ATФ. Встречая на пути участок двойной спирали, они разрывают водородные связи между основаниями, разделяют цепи и продвигают репликационную вилку. Вслед за этим с одиночными цепями ДНК связываются специальные дестабилизирующие спираль белки, которые не позволяют одиночным цепям ДНК сомкнуться. При этом они не закрывают оснований ДНК, оставляя их доступными для спаривания.
Не
следует забывать, что комплементарные
цепи ДНК закручены друг вокруг друга
в спираль. Следовательно, для того
чтобы репликационная вилка могла
продвигаться вперед, вся еще не
удвоенная часть ДНК должна была
бы очень быстро вращаться. Эта топологическая
проблема решается путем образования
в спирали своего рода "шарниров",
позволяющих цепям ДНК раскрутиться. Принадлежащие
к особому классу белки, называемые ДНК-топоизомеразами,
вносят в цепь ДНК одно- или двух- цепочные
разрывы, позволяющие цепям ДНК разделиться,
а затем заделывают эти разрывы. Топоизомеразы
участвуют также в расцеплении зацепленных
двухцепочечных колец, образующихся при
репликации кольцевых двунитевых ДНК.
С помощью этих важных ферментов двойная
спираль ДНК в клетке может принимать
"недокрученную" форму с меньшим
числом витков; в такой ДНК легче происходит
расхождение двух цепей ДНК в репликационной
вилке.
7.4Прерывистый
синтез ДНК
Легко вообразить, что репликация происходит путем непрерывного роста нуклеотида за нуклеотидом обеих новых цепей по мере перемещения репликационной вилки; при этом, поскольку две цепи в спирали ДНК антипараллельны, одна из дочерних цепей должна была бы расти в направлении 5'-3', а другая в направлении 3'-5'. В действительности, однако, оказалось, что дочерние цепи растут только в направлении 5'-3', то есть всегда удлиняется 3'-конец затравки, а матрица считывается ДНК-полимеразой в направлении 3'-5'.Это утверждение на первый взгляд кажется несовместимым с движением репликационной вилки в одном направлении, сопровождающемся одновременным считыванием двух антипараллельных нитей.
Разгадка
секрета заключается в том, что
синтез ДНК происходит непрерывно только
на одной из матричной цепей. На второй
матричной цепи ДНК синтезируется
сравнительно короткими фрагментами
(длиной от 100до 1000 нуклеотидов, в зависимости
от вида), названными по имени обнаружившего
их ученого фрагментами
Оказаки. Вновь образованная цепь, которая
синтезируется непрерывно, называется
ведущей, а другая, собираемая из фрагментов
Оказаки, отстающей. Синтез каждого из
этих фрагментов начинается с РНК-затравки.
Через некоторое время РНК-затравки удаляются,
бреши застраиваются ДНК-полимеразой
и фрагменты сшиваются в одну непрерывную
цепь ДНК специальным ферментом.