Автор работы: Пользователь скрыл имя, 09 Января 2015 в 16:48, контрольная работа
Одним из разделов молекулярной генетики и молекулярной биологии, который нашел наибольшее практическое приложение, является генная инженерия.
Родившись в начале 70-х годов, она добилась сегодня больших успехов. Методы генной инженерии преобразуют клетки бактерий, дрожжей и млекопитающих в «фабрики» для масштабного производства любого белка.
Введение 3
I. Генная инженерия 4
II. Методы генной инженерии 8
III. Достижения генной инженерии 10
IV. Тест по генетике 14
Заключение 16
Список используемой литературы 17
Контрольная работа по генетике
Генная инженерия
Рязань 2014 г.
План
Введение 3
I. Генная инженерия 4
II. Методы генной инженерии 8
III. Достижения генной инженерии 10
IV. Тест по генетике 14
Заключение 16
Список используемой литературы 17
Введение
Одним из разделов молекулярной генетики и молекулярной биологии, который нашел наибольшее практическое приложение, является генная инженерия.
Родившись в начале 70-х годов, она добилась сегодня больших успехов. Методы генной инженерии преобразуют клетки бактерий, дрожжей и млекопитающих в «фабрики» для масштабного производства любого белка.
Это дает возможность детально анализировать структуру и функции белков и использовать их в качестве лекарственных средств.
В настоящее время кишечная палочка (E. coli) стала поставщиком таких важных гормонов как инсулин и соматотропин.
Ранее инсулин получали из клеток поджелудочной железы животных, поэтому стоимость его была очень высока. Для получения 100г кристаллического инсулина требуется 800-1000кг поджелудочной железы, а одна железа коровы весит 200-250грамм. Это делало инсулин дорогим и труднодоступным для широкого круга диабетиков.
Компания "Genentec" в 1980 году разработала технологию производства соматотропина с помощью бактерий, который был лишен перечисленных недостатков. В 1982 году гормон роста человека был получен в культуре E. coli и животных клеток в институте Пастера во Франции, а с 1984 года начато промышленное производство инсулина и в СССР.
I. Генная инженерия
Генная инженерия - это сумма методов, позволяющих переносить гены из одного организма в другой, или - это технология направленного конструирования новых биологических объектов.
Генная инженерия не является наукой – это только набор инструментов, использующий современные достижения клеточной и молекулярной биологии, генетики, микробиологии и вирусологии.
Работы по изменению существующих органических форм стали возможны только после того, как в 1953 году была расшифрована молекула ДНК. Человек наконец понял сущность гена, его значение для белков, прочитал код геномов живых организмов и естественно не стал останавливаться на достигнутом. В душах людей возникло сильное желание «творить» животный и растительный мир планеты по своему усмотрению.
С поразительной настойчивостью и упорством человек стал добиваться поставленной цели и к концу первого десятилетия XXI века достиг очень многого. Он научился выделять ген из организма и синтезировать его в лабораторных условиях; освоил технологии видоизменения гена для придания ему нужной структуры; нашёл способы введения в ядро клетки преобразованного гена и присоединения его к существующим генетическим образованиям.
Это сложнейшие технологии: они не имеют аналогов в окружающем мире. Ведь ген, молекула ДНК, ядро клетки представляют из себя микроскопические объекты, к которым невозможно подступиться со скальпелем, пинцетом или каким либо другим инструментом. Даже подковать блоху в тысячу раз легче, чем произвести определённые манипуляции, скажем, с тем же самым геномом.
Всё это стало возможно благодаря ферментам – образованиям на основе белка, отвечающим за организацию работы клетки. В частности можно назвать такие ферменты, как рестриктазы. Одна из их функций – защита клетки от инородных генов. Чужая ДНК разрезается этим надёжным стражем на отдельные части, причём существует множество различных рестриктаз, каждая из которых наносит удар в строго определённом месте.
Подобрав набор таких ферментов, можно без труда расчленять молекулу на требуемые участки. Затем необходимо их соединить, но уже по новому. Тут помогает природное свойство генетического материала воссоединяться друг с другом. Помощь в этом оказывают также ферменты лигазы, задача которых заключается именно в соединении двух молекул с образованием новой химической связи.
Непохожий ни на что гибрид создан. Представляет он собой молекулу ДНК, несущую новую генетическую информации. Такое образование в генной инженерии называют вектором. Его главная задача – передача новой программы воспроизводства намеченному для этой цели живому организму. Но ведь последний может её проигнорировать, отторгнуть и руководствоваться только родными генетическими программами.
Такое невозможно, благодаря явлению, которое носит название трансформация у бактерий и трансфекция у человека и животных. Суть его заключается в том, что если клетка организма поглотила свободную молекулу ДНК из окружающей среды, то она всегда встраивает её в геном. Это влечёт за собой появление у такой клетки новых наследственных признаков, запрограммированных в поглощённую ДНК.
Поэтому, чтобы новая генетическая программа начала работать, необходимо только одно, – чтобы она оказалась в нужной клетке. Это сделать не просто, так как такое сложное образование, как клетка, имеет множество защитных механизмов, препятствующих проникновению в неё чужеродных объектов.
Любые преграды можно обойти. Для начала маленькие – к примеру, введение чужеродных генов в бактерии. Здесь, в качестве вектора, вполне можно использовать плазмиду – кольцевую молекула ДНК малых размеров, располагающуюся в клетках вне хромосом и несущую дополнительные половые признаки. Бактерии постоянно обмениваются плазмидами, поэтому не составляет никакого труда перепрограммировать указанную молекулу и направить в клетку.
Значительно более трудно ввести готовый ген в наследственный аппарат клеток растений и животных. Здесь на помощь приходят вирусы – генетические элементы, одетые в белковую оболочку и способные переходить из одной клетки в другую. Для такой работы прекрасно подходят молекулы ДНК вирусов – фаги. Их «переделывают» под нужные параметры и включают в генетический аппарат животного или растительного организма.
Всё, дело сделано. Внедрённый генетический код начинает работать. Иногда бывают сбои, если часть генов новой ДНК окажутся «молчащими». Таких много в каждом организме. У одних живых существ они прекрасно функционируют, у других же не проявляют себя никак. Видимо прекращают свою деятельность при утере той или иной особью каких-то качеств в процессе эволюции.
Накладки и недоработки учитываются и тщательно анализируются. Непрерывно идут работы, изучающие различные комбинации генов: удаление части их из молекулы или наоборот – добавление составляющих, совсем не свойственных данному живому организму.
Рассматриваются вопросы корректировки механизмов, отвечающих за процесс преобразования наследственной информации ДНК в такой функциональный продукт, как РНК или белок. Всё это обеспечивает высокую эффективность и качество конечных результатов по генетической модернизации окружающего мира.
II. Методы генной инженерии
Цель прикладной генетической инженерии заключается в конструировании таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека.
На технологии рекомбинантных ДНК основано получение высокоспецифичных ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями (например, у человека и курицы). ДНК-зонды также используются в диагностике различных заболеваний.
Технология рекомбинантных ДНК сделала возможным нетрадиционный подход «белок-ген», получивший название «обратная генетика». При таком подходе из клетки выделяют белок, клонируют ген этого белка, модифицируют его, создавая мутантный ген, кодирующий измененную форму белка. Полученный ген вводят в клетку. Таким способом можно исправлять дефектные гены и лечить наследственные заболевания.
Если гибридную ДНК ввести в оплодотворенное яйцеклетку, могут быть получены трансгенные организмы, передающие мутантный ген потомками.
Генетическая трансформация животных позволяет установить роль отдельных генов и их белковых продуктов как в регуляции активности других генов, так и при различных патологических процессах.
Технология рекомбинантных ДНК использует следующие методы:
1. специфическое расщепление ДНК рестрицирующими нуклеазами, ускоряющее выделение и манипуляции с отдельными генами;
2. быстрое секвенирование всех нуклеотидов очищенном фрагменте ДНК, что позволяет определить границы гена и аминокислотную последовательность, кодируемую им;
3. конструирование рекомбинантной ДНК;
4. гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большей точностью и чувствительностью;
5. клонирование ДНК: амплификация in vitro с помощью цепной полимеразной реакции или введение фрагмента ДНК в бактериальную клетку, которая после такой трансформации воспроизводит этот фрагмент в миллионах копий;
6. введение рекомбинантной ДНК в клетки или организмы.
III. Достижения генной инженерии
В наши дни успехи и достижения видны невооружённым глазом. Если рассмотреть такую сферу человеческой деятельности, как сельское хозяйство, то здесь генная инженерия добилась самых впечатляющих результатов.
С начала 80-х годов получено множество геномодифицированных сортов зерновых культур. На конец первого десятилетия XXI века ими засеяно 120 млн. га. земельных угодий по всему миру. Отмечен высочайший уровень урожайности, его потрясающая устойчивость к неблагоприятным климатическим условиям и полное отсутствие паразитов, пожирающих необходимые для людей злаки.
Выведены невиданные раньше сорта картофеля, кукурузы, сои, риса, рапса, огурцов. Количество видов растений, к которым успешно применены методы генной инженерии, превышает цифру 50. Трансгенные плоды имеют более длительный срок созревания, чем обычные культуры. Этот фактор прекрасно сказывается при транспортировке, когда не надо бояться, что продукт перезреет.
Отпадает надобность в селекции, с её ограниченными возможностями получения гибридов только от одних и тех же организмов. Генная инженерия может скрещивать помидоры с картошкой, огурцы с луком, виноград с арбузами – возможности здесь просто потрясающие. Размеры и аппетитный свежий вид полученного продукта могут приятно удивить любого.
Скоро слова инсектициды, акарициды, пестициды будут надёжно забыты, так как внедрённые в растительную клетку овоща, фрукта или зерновой культуры молекулы ДНК, определённых видов бактерий, уничтожат и колорадского жука, и хлопковую совку, и листовёртку, и многих-многих других вредителей сельскохозяйственных угодий. Это сэкономит огромные средства на опыление полей, резко снизит другие затраты и соответственно понизит себестоимость конечного продукта.
Животноводство также находится в зоне интересов генной инженерии. Исследования по созданию трансгенных овец, свиней, коров, кроликов, уток, гусей, кур считаются в наши дни приоритетными. Здесь большое внимание уделяется именно животным, которые вполне могли бы синтезировать различные лекарственные препараты: инсулин, гормоны, интерферон, аминокислоты.
Так генетически модифицированные коровы и козы могли бы давать молоко, в котором содержались бы необходимые составляющие для лечения такого страшного заболевания, как гемофилия. Инсулин, антитрипсин тоже можно получать из питательной белой жидкости. Не надо забывать и о стоимости. Создание такого типа биологических лекарств обойдётся раз в 20 дешевле, чем производство соответствующих медикаментов при помощи традиционной химии.
Успешно ведутся работы по регулированию обмена веществ, от которого напрямую зависит продуктивность. В овцеводстве вполне реально создать животных, предрасположенных к быстрому росту шерсти. Массовое выведение более крупных пород свиней – дело ближайших лет. То же касается и домашней птицы.
Не надо сбрасывать со счетов и борьбу с опасными вирусами. Генетически устойчивая к различным заразным заболеваниям живность уже существует и очень комфортно чувствует себя в окружающей среде. К таковым можно отнести кроликов, которые стали забывать, что такое лейкозом.
Но самое наверное перспективное в генной инженерии – это клонирование животных. Под этим термином понимается (в узком смысле этого слова) копирование клеток, генов, антител и многоклеточных организмов в лабораторных условиях. Такие экземпляры генетически одинаковы. Наследственная изменчивость возможна только в случае случайных мутаций или, если создана искусственно.
Благодаря клонированию можно воспроизводить очень ценные с той или иной точки зрения особи. Это могут быть и представители пород крупного рогатого скота, и овец, и свиней, и скаковых лошадей, и редких пород собак. Примером такого процесса может служить овечка Долли, успешно клонированная из клетки другого взрослого существа. Она появилась на свет в Великобритании 5 июля 1996 года, прожила шесть с половиной лет и умерла 14 февраля 2003 года.