Генетика как научный фундамент биотехнологии

Автор работы: Пользователь скрыл имя, 18 Декабря 2011 в 13:14, творческая работа

Описание работы

1. Основы биотехнологии. Задачи биотехнологии. Структура современной биотехнологии
2. Клеточная инженерия: достижения и перспективы
3. Генная инженерия: достижения и перспективы
4. Генетические основы высоких технологий

Файлы: 1 файл

биотехнология .docx

— 45.56 Кб (Скачать файл)

 Значение  клеточной инженерии

 1. Применение  клеточных культур позволяет  преодолеть многие проблемы биоэтики (биологической этики), связанные с умерщвлением животных. Поэтому культуры клеток широко используются в научных исследованиях.

 2. В культуре  можно выращивать строго определенные клетки в неограниченном количестве. Поэтому культуры клеток и тканей, выделенные из природного материала, широко используются при промышленном производстве биологически активных веществ. В частности, на клеточно-тканевом уровне выращиваются женьшень, родиола розовая и другие лекарственные растения.

 3. Из апикальных меристем путем микроклонирования получают посадочный материал ценных сортов растений, свободный от многих болезней (например, от вирусов и микоплазм), в частности, безвирусный посадочный материал цветочных и плодово-ягодных культур. На питательной среде размножают и каллусныеткани, которые в дальнейшем дифференцируются  с образованием целостных растений.

 4. Решаются  проблемы получения отдаленных гибридов растений. Во-первых, путем соматической гибридизации можно скрещивать растения, которые не скрещиваются обычным путем. Во-вторых, полученные отдаленные гибриды можно воспроизводить, минуя семенное размножение и мейотический фильтр.

 5. На культурах  клеток получают вакцины, например, против кори, полиомиелита. В настоящее  время решается вопрос крупномасштабного производствамоноклональных антител на основе гибридомных культур.

 6. Сохраняя  культуры клеток, можно сохранять  генотипы отдельных организмов  и создавать банки генофондов  отдельных сортов и даже целых  видов, например, в виде мериклонов (культур меристем).

 7. Манипуляции  с отдельными клетками и их  компонентами используются для  клонирования животных. Например, ядра  из клеток кишечного эпителия  головастика внедряются в энуклеированные яйцеклетки лягушки. В результате из таких яйцеклеток развиваются особи с генетически идентичными ядрами.  

 3. Генная инженерия:  достижения и перспективы.  Возможности коррекции  генотипа при генетических  заболеваниях  

 Генная  инженерия представляет собой совокупность методов, позволяющих  создавать синтетические  системы на молекулярно- биологическом уровне.

 Генная инженерия  дает возможность конструировать функционально активные структуры в форме рекомбинантных ДНК вне биологических систем (in vitro), а затем вводить их в клетки.  

 Генная инженерия  возникла в 1972 г., когда в лаборатории  П. Берга (Станфордский ун-т, США) была получена первая рекомбинантная (гибридная) ДНК (рекДНК), в которой были соединены фрагменты ДНК фага лямбда и кишечной палочки с кольцевой ДНК обезьяньего вируса SV40. С конца 1980-х гг. генетически модифицированные растения начинают использоваться в сельском хозяйстве.   

 Методы генной инженерии основаны на получении  фрагментов исходной ДНК и их модификации.

 Для получения  исходных фрагментов ДНК разных организмов используется несколько способов:

 – Получение  фрагментов ДНК из природного материала  путем разрезания исходной ДНК с помощью специфических нуклеаз (рестриктаз).

 – Прямой химический синтез ДНК, например, для создания зондов (см. ниже).

 – Синтез комплементарной  ДНК (кДНК) на матрице мРНК с использованием фермента обратной транскриптазы (ревертазы).   

 Определение нуклеотидного состава фрагментов ДНК производится с помощью радиоактивных зондов – молекул ДНК с заранее известной структурой, в состав которых входят радиоактивные изотопы фосфора или водорода. Если структура выделенного фрагмента хотя бы частично комплементарна структуре зонда, то происходит ДНК–ДНК–гибридизация, и на микрофотографии препарата появляется засветка от радиоактивного изотопа.

 Выделенные  участки ДНК встраивают в векторы переноса ДНК. Векторы  – это небольшие молекулы ДНК, способные проникать в другие клетки и реплицироваться в них.

 В состав вектора  входит не менее трех групп генов:

 1. Гены, которые  интересует экспериментатора.

 2. Гены, отвечающие  за репликацию вектора.

 3. Гены-маркеры, по деятельности которых можно судить об успешности трансформации (например, гены устойчивости к антибиотикам или гены, отвечающие за синтез белков, светящихся в ультрафиолетовом свете).

 Для внедрения  векторов в прокариотические или эукариотические клетки используют различные способы: 

 1. Биотрансформация. Используются векторы, способные сами проникать в клетки. Частным случаем биотрансформации является агробактериальнаятрансформация.

 2. МикроинъекцииИспользуются, если клетки, подлежащие трансформации, достаточно крупные (например, икринки, пыльцевые трубки).

 3. Биобаллистика (биолистика). Векторы «вбивают» в клетки с помощью специальных «пушек».

 В качестве векторов часто используют плазмиды (кольцевые молекулы ДНК прокариотических клеток), а также ДНК вирусов. У эукариот в качестве векторов используют мобильные генетические элементы – участки хромосом, способные образовывать множество копий и встраиваться в другие хромосомы. В составе одного вектора можно комбинировать различные фрагменты ДНК (различные гены). Вновь образованные фрагменты ДНК называют рекомбинантными.

 Векторы переноса ДНК вместе с внедренными фрагментами ДНК различными способами вводят в прокариотические или эукариотические клетки и получаюттрансгенные клетки. В ходе размножения трансгенных клеток происходит клонирование требуемых фрагментов ДНК, в частности, отдельных генов. Клонированные гены эукариот подвергают различным модификациям (например, добавляют перед ними сильные промоторы) и внедряют в клетки-продуценты. Основная проблема состоит в том, чтобы чужеродные гены экспрессировались постоянно, то есть должен происходить синтез необходимых веществ без ущерба для клетки–хозяина.   

 Практические  достижения современной генной инженерии  заключаются в следующем:

 – Созданы банки генов, или клонотеки, представляющие собой коллекции клонов бактерий. Каждый из этих клонов содержит фрагменты ДНК определенного организма (дрозофилы, человека и других).

 – На основе трансформированных штаммов вирусов, бактерий и дрожжей осуществляется промышленное производство инсулина, интерферона, гормональных препаратов. На стадии испытаний находится производство белков, позволяющих сохранить свертываемость крови при гемофилии, и других лекарственных препаратов.

 – Созданы трансгенные высшие организмы (некоторые рыбы и млекопитающие, многие растения) в клетках которых успешно функционируют гены совершенно других организмов. Широко известны генетически модифицированные растения (ГМР), устойчивые к высоких дозам определенных гербицидов, а также Bt-модифицированные растения, устойчивые к вредителям.

 – Разработаны  методы клонирования строго определенных участков ДНК, например, метод полимеразной цепной реакции (ПЦР). ПЦР-технологии применяются для идентификации определенных нуклеотидных последовательностей, что используется при ранней диагностике некоторых заболеваний, например, для выявления носителей ВИЧ-инфекции.

 Возможности генной инженерии практически безграничны. В настоящее время интенсивно изучается возможность коррекции  генома человека (и других организмов) при генетических и негенетических заболеваниях.  

 4. Генетические основы  высоких технологий. Преодоление недостатков  монокультуры, создание  поликлональных композиций. Получение экологически чистой продукции  

 Современная биотехнология развивается настолько  динамично, что невозможно разработать  унифицированную классификацию  ее компонентов. Лишь в самом грубом приближении (по аналогии с промышленными небиологическими технологиями) можно выделить следующие типы технологий: технологии низкого и высокого уровня, экстенсивные и интенсивные технологии, а также безотходные, безопасные, ресурсо- и энергосберегающие, трудоемкие, наукоемкие, прорывные. Современные биотехнологии различных направлений и различных уровней неразрывно связаны между собой в единую научно-производственную систему.  

 Технологии  низкого уровня – это технологии традиционные, в известной мере, устаревшие. Они характеризуются низкой наукоемкостью, т.е. базируются на использовании рабочих систем, полученных методами традиционной селекции. Для реализации таких технологий не требуется специального оборудования и специальной подготовки материала. Такие технологии широко используются в рамках обычного сельскохозяйственного производства, в частности, в растениеводстве (тогда рабочей системой можно считать агроэкосистему, например, обрабатываемое картофельное поле). К биотехнологиям низкого уровня относятся технологии биологической очистки сточных вод, получения биотоплива, некоторые виды микробиологического синтеза.

 Технологии  низкого уровня с минимальными затратами  материальных ресурсов, энергии и  человеческого труда называются экстенсивными. Примером таких технологий служит повышение плодородия почв путем вывоза на поля навоза, торфа, путем запашки пожнивных остатков и/или сидератов (специально выращенных бобовых растений). Эффективность подобных технологий невелика: при их использовании продуктивность агроэкосистем мало отличается от продуктивности природных экосистем. Низкая эффективность экстенсивных технологий низкого уровня компенсируется расширением площади сельскохозяйственных угодий: вырубаются леса (при этом древесина используется на топливо, для производства бумаги), распахиваются степи. Вырубка лесов и распашка степей неизбежно сопровождаются эрозией почв, оскудением водных ресурсов. Подобные технологии показали свою неэффективность уже в первой половине XX столетия.

 Более эффективными являются интенсивные технологии. Их эффективность достигается, в первую очередь, путем внедрения новых интенсивных сортов растений (в животноводстве и микробиологическом синтезе – интенсивных пород животных и штаммов микроорганизмов). Интенсивность сортов (пород, штаммов) определяется их повышенной продуктивностью при увеличении затрат человеческого труда, при увеличении затрат сырьевых и энергетических ресурсов путем все более широкого использования средств механизации, автоматизации и химизации. Примером таких технологий служит повышение плодородия почв с помощью предварительно подготовленных компостов, путем совместного внесения бактериальных и минеральных удобрений. Широчайшее внедрение подобных технологий характерно для второй половины XX столетия. Например, в Великобритании в период с 1950 по 1980 гг. удалось увеличить урожайность зерновых в 2 раза (50% прироста получено за счет внедрения новых интенсивных сортов, а 50% – за счет увеличения затрат сырьевых и энергетических ресурсов). В настоящее время в экономически развитых странах на производство 1 пищевой калории затрачивается 5…7 калорий ископаемого топлива. Однако в результате применения интенсивных технологий низкого уровня многократно усиливается локальная нагрузка на природные экосистемы, происходит механическая эрозия почв, возрастает их загрязненность минеральными удобрениями и средствами защиты растений. Возрастает и глобальная нагрузка на биосферу, в первую очередь, за счет выбросов углекислого газа: количество СО2, образовавшегося при сжигании ископаемого топлива, в несколько раз больше, чем количество СО2, ассимилированного в ходе фотосинтеза в агроэкосистемах. Одним из самых существенных недостатков интенсивных технологий является резкое снижение качества продукции (такую продукцию часто называют «экологически грязной»).   

 Уже в 1970-е  гг. стало ясно, что использование  технологий низкого уровня – это  тупиковый путь. Выходом из этого  тупика стало использование прорывных технологий. Прорывные технологии базируются на самых современных достижениях науки и техники. В качестве прорывных эти технологии они существуют недолго: то, что вчера казалось невероятным, непривычным, фантастичным – сегодня становится обыденным, рутинным. В свое время прорывными технологиями стали технологии микробиологического синтеза (в частности, получения антибиотиков), технологии клеточной инженерии (в частности, гибридизация соматических клеток и клонирование организмов), технологии генной инженерии (в частности, получение кДНК, получение векторов переноса ДНК и созданиетрансгенных организмов).

Информация о работе Генетика как научный фундамент биотехнологии