Физиология ЦНС

Автор работы: Пользователь скрыл имя, 18 Марта 2010 в 19:59, Не определен

Описание работы

1. Нейрон служит для передачи информации. Он состоит из трех частей: клеточного тела с ядром и весьма многочисленными митохондриями, дендритов, проводящих нервные сигналы к телу клетки, и аксона передающего импульсы к эффекторам или к другим нейронам с помощью соединений, называемых синапсами.
2. Нервные импульсы сами по себе не несут какой-либо специфической информации; расшифровка их значения скорее определяется той областью коры, которую они возбуждают.

Файлы: 1 файл

Структура и функции нейрона.docx

— 28.07 Кб (Скачать файл)

Структура и функции  нейрона 

1. Нейрон служит  для передачи информации. Он состоит  из трех частей: клеточного тела  с ядром и весьма многочисленными  митохондриями, дендритов, проводящих  нервные сигналы к телу клетки, и аксона передающего импульсы  к эффекторам или к другим  нейронам с помощью соединений, называемых синапсами.

2. Нервные импульсы  сами по себе не несут какой-либо  специфической информации; расшифровка  их значения скорее определяется  той областью коры, которую они  возбуждают.

3. Отдельный импульс,  или потенциал действия, возникает  у основания аксона в результате  активации дендритов и тела  нейрона,

4. Проведение импульса  по нервному волокну происходит  в результате деполяризации последовательных  участков его мембраны, за которой  следует период рефрактерности.

5. Нервный импульс  характеризуется постоянной амплитудой  и скоростью распространения.  Он подчиняется закону «всё  или ничего»; либо он не возникает  вовсе, либо-если превышен порог возбуждения-все связанные с ним события сразу развертываются «в полнуьо силу».

6. Передача нервного  сигнала с одного нейрона на  другой происходит через узкую  синаптическую щель, нейромедиаторы, выделяемые в эту щель концевыми бляшками пресинаптического нейрона, связываются рецепторными участками мембрань постсинаптического нейрона и вызывают его возбуждение или, наоборот, уменьшают его возбудимость.

7. Каждый нейромедиатор выполняет в данном отделе нервной системы специфическую функцию. Воздействие медиатора на уровне синапсов может привести к сокращению или расслаблению мускулатуры ускорению или замедлению сердечного и дыхательного ритма, активации или угнетению функции мозговой коры, пробуждению внимания или засыпанию.

8. Эффекты нейромедиаторов регулируются другими нейромедиаторами, взаимодействующими с ними.

9. Действие психотропных  препаратов можно объяснить их  способностью связываться с определенными  рецепторными участками постси-наптической мембраны, т. е. занимать место соответствующих нейромедиаторов й тем самым изменять характер передачи нервных сигналов.

Медиаторы нервной  системы

Относится к предметной области: Системная нейрофизиология

Использовано в  разделах:

Системная нейрофизиология: Медиаторы (nan) 

В качестве примера  разберем, как действует в синапсе  медиатор, который называется ацетилхолином. Этот медиатор широко распространен  в головном мозге и в периферических окончаниях нервных волокон. Например, двигательные импульсы, которые по соответствующим нервам приводят к сокращению мышц нашего тела, оперируют ацетилхолином. Ацетилхолин был открыт в 30-х годах австрийским ученым О. Леви. Эксперимент был очень прост: изолировали сердце лягушки с подходящим к нему блуждающим нервом. Было известно, что электрическая стимуляция блуждающего нерва приводит к замедлению сокращений сердца вплоть до полной его остановки. О. Леви простимулировал блуждающий нерв, получил эффект остановки сердца и взял из сердца немного крови. Оказалось, что если эту кровь добавить в желудочек работающего сердца, то оно замедляет свои сокращения. Был сделан вывод: при стимуляции блуждающего нерва выделяется вещество, останавливающее сердце. Это и был ацетилхолин. Позже был открыт фермент, который расщеплял ацетилхолин на холин (жир) и уксусную кислоту, в результате чего прекращалось действие медиатора. Этим исследованием впервые была установлена точная химическая формула медиатора и последовательность событий в типичном химическом синапсе. Эта последовательность событий сводится к следующему.

Потенциал действия, пришедший по пресинаптическому волокну к синапсу, вызывает деполяризацию, которая включает кальциевый насос, и ионы кальция поступают в синапс; ионы кальция связываются белками мембраны синаптических пузырьков, что приводит к активному опорожнению (экзоцитозу) пузырьков в синаптическую щель. Молекулы медиатора связываются (узнающим центром) соответствующими рецепторами постсинаптической мембраны, при этом открывается ионный канал. Через мембрану начинает протекать ионный ток, что приводит к возникновению на ней постсинаптического потенциала. В зависимости от характера открытых ионных каналов возникает возбудительный (открываются каналы для ионов натрия и калия) или тормозной (открываются каналы для ионов хлора) постсинаптический потенциал.

Ацетилхолин весьма широко распространен в живой  природе. Например, он находится в  стрекательных капсулах крапивы, в  стрекательных клетках кишечнополостных животных (например, пресноводной гидры, медузы) и пр. В нашем организме  ацетилхолин выбрасывается в  окончаниях двигательных нервов, управляющих  мышцами, из окончаний блуждающего  нерва, который управляет деятельностью  сердца и других внутренних органов. Человек давно знаком с антагонистом ацетилхолина - это яд кураре, которым  пользовались индейцы Южной Америки  при охоте на животных. Оказалось, что кураре, попадая в кровь, вызывает обездвиживание животного, и оно  погибает фактически от удушья, но кураре не останавливает сердце. Исследования показали, что в организме существуют два типа рецепторов к ацетилхолину: один успешно связывает никотиновую  кислоту, а другой - мускарин (вещество, которое выделено из гриба рода Muscaris). На мышцах нашего тела находятся рецепторы никотинового типа к ацетилхолину, тогда как на сердечной мышце и нейронах головного мозга - рецепторы к ацетилхолину мускаринового типа.

В настоящее время  в медицине широко применяют синтетические  аналоги кураре для обездвиживания больных во время сложных операций на внутренних органах. Применение этих средств приводит к полному параличу двигательной мускулатуры (связывается рецепторами никотинового типа), но не влияет на работу внутренних оранов, в том числе сердца (рецепторы мускаринового типа). Нейроны головного мозга, возбуждаемые через мускариновые ацетилхолиновые рецепторы, играют большую роль в проявлении некоторых психических функций. Сейчас известно, что гибель таких нейронов приводит к старческому слабоумию (болезнь Альцгеймера). Другим примером, который должен показать важность именно рецепторов никотинового типа на мышце к ацетилхолину, может служить заболевание, называемое miastenia grevis (мышечная слабость). Это генетически наследуемая болезнь, т. е. ее происхождение связано с «поломками» генетического аппарата, которые передаются по наследству. Заболевание проявляется в возрасте ближе к половозрелости и начинается с мышечной слабости, которая постепенно усиливается и захватывает все более обширные группы мышц. Причиной этого недуга оказалось то, что организм больного вырабатывает белковые молекулы, которые прекрасно связываются ацетилхолиновыми рецепторами никотинового типа. Занимая эти рецепторы, они препятствуют связыванию с ними молекул ацетилхолина, выбрасываемых из синаптических окончаний двигательных нервов. Это и приводит к блокированию синаптического проведения к мышцам и, следовательно, к их параличу.

Описанный на примере  ацетилхолина тип синаптической передачи - не единственный в ЦНС. Второй тип синаптической передачи также широко распространен, например, в синапсах, в которых медиаторами являются биогенные амины (дофамин, серотонин, адреналин и др.). В этом типе синапсов имеет место следующая последовательность событий. После того как образовался комплекс «молекула медиатора - рецепторный белок», активируется специальный мембранный белок (G-белок). Одна молекула медиатора при связывании с рецептором может активировать много молекул G-белка, и это усиливает эффект медиатора. Каждая активированная молекула G-белка в одних нейронах может открывать ионный канал, а в других активировать внутри клетки синтез специальных молекул, так называемых вторичных посредников. Вторичные посредники могут запускать в клетке многие биохимические реакции, связанные с синтезом, например, белка, в этом случае возникновения электрического потенциала на мембране нейрона не происходит.

Существуют и другие медиаторы. В головном мозге в  качестве медиаторов «работает» целая  группа веществ, которые объединены под названием биогенные амины. В середине прошлого столетия английский врач Паркинсон описал болезнь, которая  проявлялась как дрожательный паралич. Это тяжелое страдание вызвано  разрушением в мозге больного нейронов, которые в своих синапсах (окончаниях) выделяют дофамин - вещество из группы биогенных аминов. Тела этих нейронов находятся в среднем  мозге, образуя там скопление, которое  называется черной субстанцией. Исследования последних лет показали, что дофамин  в мозге млекопитающих также  имеет несколько типов рецепторов (в настоящее время известно шесть  типов). Другое вещество из группы биогенных  аминов - серотонин (другое название 5-окситриптамин) - вначале было известно как средство, приводящее к подъему кровяного давления (сосудосуживающее). Обратите внимание, что, это отражено в его названии. Однако оказалось, что истощение в головном мозге серотонина приводит к хронической бессоннице. В опытах на животных было установлено, что разрушение в мозговом стволе (задних отделах мозга) специальных ядер, которые известны в анатомии как ядра шва, приводит к хронической бессоннице и в дальнейшем гибели этих животных. Биохимическое исследование установило, что нейроны ядер шва содержат серотонин. У пациентов, страдающих хронической бессонницей, также обнаружено снижение концентрации серотонина в мозге.

К биогенным аминам относят также адреналин и  норадреналин, которые содержатся в  синапсах нейронов автономной нервной  вегетативной системы. Во время стресса  под влиянием специального гормона - адренокортикотропного (подробнее  см. ниже) - из клеток коры надпочечников в кровь также выбрасываются адреналин и норадреналин.

...

Из вышеизложенного понятно, какое значение в функциях нервной системы играют медиаторы. В ответ на приход нервного импульса к синапсу происходит выброс медиатора; молекулы медиатора соединяются (комплементарно - как «ключ к замку») с рецепторами постсинаптической мембраны, что приводит к открыванию ионного канала или к активированию внутриклеточных реакций. Примеры синаптической передачи, рассмотренные выше, полностью соответствуют этой схеме. Вместе с тем благодаря исследованиям последних десятилетий эта довольно простая схема химической синаптической передачи значительно усложнилась. Появление иммунохимических методов позволило показать, что в одном синапсе могут сосуществовать несколько групп медиаторов, а не один, как это предполагали раньше. Например, в одном синаптическом окончании одновременно могут находиться синаптические пузырьки, содержащие ацетилхолин и норадреналин, которые довольно легко идентифицируются на электронных фотографиях (ацетилхолин содержится в прозрачных пузырьках диаметром около 50 нм, а норадреналин - в электронно-плотных диаметром до 200 нм). Кроме классических медиаторов, в синаптическом окончании могут находиться один или несколько ней-ропептидов. Количество веществ, содержащихся в синапсе, может доходить до 5-6 (своеобразный коктейль). Более того, медиаторная специфичность синапса может меняться в онтогенезе. Например, нейроны симпатических ганглиев, иннервирующие потовые железы у млекопитающих, исходно норадренергичны, но у взрослых животных становятся холинергичными.

В настоящее время  при классификации медиаторных веществ принято выделять: первичные медиаторы, сопутствующие медиаторы, медиаторы-модуляторы и аллостерические медиаторы. Первичными медиаторами считают те, которые действуют непосредственно на рецепторы постсинаптической мембраны. Сопутствующие медиаторы и медиаторы-модуляторы могут запускать каскад ферментативных реакций, которые, например, фосфорилируют рецептор для первичного медиатора. Аллостерические медиаторы могут участвовать в кооперативных процессах взаимодействия с рецепторами первичного медиатора.

Долгое время за образец принимали синаптическую передачу по анатомическому адресу (принцип «точка - в точку»). Открытия последних десятилетий, особенно медиаторной функции нейропептидов, показали, что в нервной системе возможен принцип передачи и по химическому адресу. Другими словами, медиатор, выделяющийся из данного окончания, может действовать не только на «свою» постсинаптическую мембрану, но и за пределами данного синапса - на мембраны других нейронов, имеющих соответствующие рецепторы. Таким образом, физиологическая реакция обеспечивается не точным анатомическим контактом, а наличием соответствующего рецептора на клетке-мишени. Собственно этот принцип был давно известен в эндокринологии, а исследования последних лет нашли ему более широкое применение.

Все известные типы хеморецепторов на постсинаптической  мембране разделяют на две группы. В одну группу входят рецепторы, в  состав которых включен ионный канал, открывающийся при связывании молекул  медиатора с «узнающим» центром. Рецепторы второй группы (метаботропные рецепторы) открывают ионный канал опосредованно (через цепочку биохимических реакций), в частности, посредством активации специальных внутриклеточных белков.

Одними из самых  распространенных являются медиаторы, принадлежащие к группе биогенных  аминов. Эта группа медиаторов достаточно надежно идентифицируется микрогистологическими методами. Известны две группы биогенных аминов: катехоламины (дофамин, норадреналин и адреналин) и индоламин (серотонин). Функции биогенных аминов в организме весьма многообразны: медиаторная, гормональная, регуляция эмбриогенеза. 

Основным источником норадренергических аксонов являются нейроны голубого пятна и прилежащих участков среднего мозга (рис. 2.14). Аксоны этих нейронов широко распространяются в мозговом стволе, мозжечке, в больших полушариях. В продолговатом мозге крупное скопление норадренергических нейронов находится в вентролатеральном ядре ретикулярной формации. В промежуточном мозге (гипоталамусе) норадренергические нейроны наряду с дофаминергическими нейронами входят в состав гипоталамо-гипофизарной системы. Норадренергические нейроны в большом количестве содержатся в нервной периферической системе. Их тела лежат в симпатической цепочке и в некоторых интрамуральных ганглиях.

Дофаминергические нейроны у млекопитающих находятся преимущественно в среднем мозге (так называемая нигро-неостриарная система), а также в гипоталамической области. Дофаминовые цепи мозга млекопитающих хорошо изучены. Известны три главные цепи, все они состоят из однонейронной цепочки. Тела нейронов находятся в мозговом стволе и отсылают аксоны в другие области головного мозга (рис. 2.15).

...

Одна цепь очень  проста. Тело нейрона находится в  области гипоталамуса и отсылает короткий аксон в гипофиз. Этот путь входит в состав гипоталамо-гипофизарной системы и контролирует систему  эндокринных желез.

Вторая дофаминовая система также хорошо изучена. Это черная субстанция, многие клетки которой содержат дофамин. Аксоны этих нейронов проецируются в полосатые тела. Эта система содержит примерно 3/4 дофамина головного мозга. Она имеет решающее значение в регулировании тонических движений. Дефицит дофамина в этой системе приводит к болезни Паркинсона. Известно, что при этом заболевании происходит гибель нейронов черной субстанции. Введение L-DOPA (предшественника дофамина) облегчает у больных некоторые симптомы заболевания.

Информация о работе Физиология ЦНС