ДНК – основа генетического материала

Автор работы: Пользователь скрыл имя, 10 Июня 2012 в 19:02, контрольная работа

Описание работы

Генетика – это наука о наследственности и изменчивости организмов, а также биологические механизмы, их обеспечивающие. Термин генетика предложен к использованию в 1906 г. английским биологом У. Бейтсоном. Она может считаться одной из самых важных областей не только биологии, но науки в целом, оказывающей существенное влияние на жизнь и развитие человечества.
Первый действительно научный шаг вперед в изучении наследственности был сделан австрийским монахом Грегором Менделем, который в 1866 г. опубликовал статью, заложившую основы современной генетики. Официальной датой рождения генетики считают 1900 год, когда были опубликованы данные Г. де Фриза, К. Корренса и К.Чермака, вновь открывших закономерности наследования признаков, установленные Г.Менделем.

Содержание работы

Введение ………………………………………………………………………...3
1. Общие понятия о дезоксирибонуклеиновых кислотах…………………… 4
2. История изучения ДНК ……………………………………………………...5
3. Ген как фактор наследственности …………………………………………..8
4. Основная догма молекулярной биологии …………………………………11
5. Биологическая роль ДНК …………………………………………………...14
6. Генетические механизмы и эволюция ……………………………………..18
Заключение ……………………………………………………………………..21
Литература……………………………………………………………………... 23

Файлы: 1 файл

Реферат генетика.doc

— 100.00 Кб (Скачать файл)

2

 

Санкт-Петербургский государственный университет сервиса и экономики

Институт туризма и международных экономических отношений

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Контрольное задание для студентов I курса СПбГУСЭ заочного отделения социально-экономических и гуманитарных специальностей

на тему:

ДНК – основа генетического материала

 

 

 

 

 

 

Выполнила:

студент I курса ЗО

Никишина Е. В.

(специальность 030300 «Психология»)

 

 

 

 

 

 

 

Санкт-Петербург

2011


Содержание

Введение ………………………………………………………………………...3

1. Общие понятия о дезоксирибонуклеиновых кислотах…………………… 4

2. История изучения ДНК ……………………………………………………...5

3. Ген как фактор наследственности …………………………………………..8

4. Основная догма молекулярной биологии …………………………………11

5. Биологическая роль ДНК …………………………………………………...14

6. Генетические механизмы и эволюция ……………………………………..18

Заключение ……………………………………………………………………..21

Литература……………………………………………………………………... 23


Введение

Генетика – это наука о наследственности и изменчивости организмов, а также биологические механизмы, их обеспечивающие. Термин генетика предложен к использованию в 1906 г. английским биологом У. Бейтсоном. Она может считаться одной из самых важных областей не только биологии, но науки в целом, оказывающей существенное влияние на жизнь и развитие человечества.

Первый действительно научный шаг вперед в изучении наследственности был сделан австрийским монахом Грегором Менделем, который в 1866 г. опубликовал статью, заложившую основы современной генетики. Официальной датой рождения генетики считают 1900 год, когда были опубликованы данные Г. де Фриза, К. Корренса и К.Чермака, вновь открывших закономерности наследования признаков, установленные Г.Менделем.

Решающее значение для развития генетики имеют открытие «вещества наследственности» – дезоксирибонуклеиновой кислоты – ДНК, расшифровка генетического кода, описание механизма биосинтеза белка.

При изучении наследственности и изменчивости человека используют следующие различные методы: генеалогический, близнецовый, цитогенетическии, биохимический, дерматоглифический, гибридизации соматических клеток, моделирования и другие.

Наследственностьэто неотъемлемое свойство всех живых существ сохранять и передавать в ряду поколений характерные для вида или популяции особенности строения, функционирования и развития.

Наследственность обеспечивает сохранение признаков и свойств организмов на протяжении многих поколений, а изменчивость обусловливает формирование новых признаков в результате изменения генетической информации или условий внешней среды.


1. Общие понятия о дезоксирибонуклеиновых кислотах

Дезоксирибонуклейновые кислоты (ДНК; устаревшие названия: дезоксипентозонуклеиновые кислоты, ядерные нуклеиновые кислоты, тимонукленновые кислоты, животные нуклеиновые кислоты) — нуклеиновые кислоты, содержащие в качестве углеводного компонента дезоксприбозу, а в качестве одного из пиримидиновых оснований — тимин, которым в молекулах рибонуклеиновых кислот соответствуют рибоза и урацил. ДНК представляют собой линейные полимеры дезоксирибонуклеотидов, в последовательности азотистых оснований которых закодирована вся наследственная информация.

Таким образом, ДНК данного организма содержит в себе информацию о всех признаках вида и особенностях индивидуума — его генотип — и передает эту информацию потомству, воспроизводя определенную последовательность оснований в строении индивидуальных ДНК. Поскольку молекулы ДНК очень больших размеров и существует огромное множество возможных неодинаковых последовательностей из четырех различных нуклеотидов, число разных молекул ДНК практически бесконечно.

В природе ДНК содержатся во всех организмах за исключением РНК-содержащих вирусов. ДНК являются типичным компонентом клеточного ядра, в котором они находятся в комплексе с белками, главным образом гистонами, образуя дезоксприбонуклеопротеиды, составляющие основу цитологической структуры хроматина и вещества хромосом. ДНК обнаружена также в хлоропластах растительной клетки и в митохондриях животных и растений, в которых она кодирует часть белков этих структур, благодаря чему они обладают некоторой автономией и лишь частично зависят от ДНК ядра.


2. История изучения ДНК

Сегодня мы знаем, что молекула ДНК является носителем кода, который управляет химической природой всего живого, а двойная спираль молекулы ДНК стала одним из самых известных научных символов. Открытие ДНК, как и практически все великие открытия, не было результатом работы одинокого гения, а увенчало собой длинную цепь экспериментальных работ. Так, эксперимент Херши—Чейз продемонстрировал, что носителем генетической информации в клетках является именно ДНК, а не белки. Еще в 1920-е годы американский биохимик родом из России Фибус Левин установил, что основные кирпичики, из которых построена ДНК, — это пятиатомный сахар дезоксирибоза (она обозначена буквой Д в слове ДНК), фосфатная группа и четыре азотистых основания — тимин, гуанин, цитозин и аденин (их обычно обозначают буквами Т, Г, Ц и А). В конце 1940-х годов американский биохимик австрийского происхождения Эрвин Чаргафф выяснил, что во всех ДНК содержится равное количество оснований Т и А и, аналогично, равное количество оснований Г и Ц. Однако относительное содержание Т/А и Г/Ц в молекуле ДНК специфично для каждого вида.

В начале 1950-х годов стали известны два новых факта, пролившие свет на природу ДНК: американский химик Лайнус Полинг показал, что в длинных молекулах, например белках, могут образовываться связи, закручивающие молекулу в спираль, а в лондонской лаборатории Морис Уилкинс и Розалинда Франклин получили данные рентгеноструктурного анализа (основанные на усовершенствованном применении закона Брэгга), позволившие предположить, что ДНК имеет спиральную структуру.

Чтобы лучше представить себе полученные ими результаты, вообразим длинную лестницу. Вертикальные стойки этой лестницы состоят из молекул сахара, кислорода и фосфора. Важную функциональную информацию в молекуле несут ступеньки лестницы. Они состоят из двух молекул, каждая из которых крепится к одной из вертикальных стоек. Эти молекулы — четыре азотистых основания — представляют собой одиночные или двойные кольца, содержащие атомы углерода, азота и кислорода и способные образовывать две или три водородные связи с другими основаниями. Форма этих молекул позволяет им образовывать связи — законченные ступеньки — лишь определенного типа: между А и Т и между Г и Ц. Другие связи возникнуть не могут. Следовательно, каждая ступенька представлена либо А—Т либо Г—Ц. Теперь вообразим, что мы берем собранную таким образом лестницу за два конца и скручиваем —  так мы получим знакомую двойную спираль ДНК.

Считывая ступеньки по одной цепи молекулы ДНК, вы получите последовательность оснований. Представьте, что это сообщение, написанное с помощью алфавита всего из четырех букв. Именно это сообщение определяет химические превращения, происходящие в клетке, и, следовательно, характеристики живого организма, частью которого является эта клетка. На другой цепи спирали никакой новой информации не содержится, ведь если вам известно основание, которое находится на одной цепи, вы знаете и то, какой должна быть вторая половина ступеньки. В некотором смысле две цепи двойной спирали относятся друг другу так же, как фотография и негатив.

Открыв двуспиральную структуру ДНК, Уотсон и Крик поняли и тот простой способ, которым осуществляется воспроизведение молекулы ДНК — как и должно происходить при делении клетки. По их собственным словам, «от нашего внимания не ускользнул тот факт, что постулированная нами специфичная парность азотистых оснований непосредственно указывает на возможный механизм копирования генетического материала».

Такой «возможный механизм копирования» определен структурой ДНК. Когда клетка приступает к делению и необходима дополнительная ДНК для дочерних клеток, ферменты начинают «расстегивать» лестницу ДНК, как застежку-«молнию», обнажая индивидуальные основания. Другие ферменты присоединяют соответствующие основания, находящиеся в окружающей жидкой среде, к парным «обнажившимся» основаниям — А к Т, Г к Ц и т.д. В результате на каждой из двух разошедшихся цепей ДНК достраивается соответствующая ей цепь из компонентов окружающей среды, и исходная молекула дает начало двум двойным спиралям.

Точно так же, как каждое великое открытие основано на работе предшественников, оно дает начало новым плодотворным исследованиям, поскольку ученые используют полученную информацию для движения вперед. Можно сказать, что открытие двойной спирали дало толчок последующему полувековому развитию молекулярной биологии, завершившемуся успешным осуществлением проекта «Геном человека».


3. Ген как фактор наследственности

Ген (греч. genos род, происхождение) — структурно-функциональная единица генетического материала, наследственный фактор, который можно условно представить как отрезок молекулы ДНК (у некоторых вирусов — молекулы РНК), включающий нуклеотидную последовательность, в которой закодирована первичная структура полипептида (белка) либо молекулы транспортной или рибосомной РНК, синтез которых контролируется этим геном. Обусловливая первичную структуру конкретного белка, ген тем самым определяет формирование отдельного признака организма или клетки.

Предположение о существовании наследственных факторов впервые было высказано Г. Менделем, который пришел к заключению, что передача признака от родителей потомству обусловлена передачей через половые клетки этих наследственных факторов, каждый из которых передается как нечто целое и независимое. В 1909 г. В. Иоганнсен предложил обозначать менделевские наследственные факторы термином «гены». В 1911 г. Т. Морганом и его сотрудниками было показано, что ген является участком хромосомы и что отдельная хромосома состоит из генов, последовательно расположенных по ее длине. Каждый ген занимает свое определенное место (локус) на хромосоме. Позднее Морганом и его сотрудниками были созданы первые хромосомные карты, на которых они показали расположение отдельных генов на хромосомах. Совокупность хромосомных (или ядерных) генов, составляющих так называемый геном, и генов, локализованных в цитоплазматических структурах — митохондриях, пластидах, плазмидах, определяет генотип клетки или организма.

Ген может непосредственно определять наличие какого-либо признака (фена) организма или принимать участие в формировании нескольких признаков (явление плейотропии). Однако основная масса признаков у человека формируется в результате взаимодействия многих генов (явление полигении). Утрата гена или его изменение приводят к изменению признака, контролируемого этим геном. Степень проявления признака, контролируемого конкретным геном (экспрессивность гена), зависит также от условий окружающей среды. В то же время даже в пределах родственной группы особей, находящихся в сходных условиях существования, проявление одного и того же гена может варьировать по степени выраженности. Все это свидетельствует о том, что при формировании признаков генотип выступает как целостная система, функционирующая в строгой зависимости от внутриорганизменной и окружающей среды. Т.о., отдельный признак или совокупность всех признаков организма, т.е. его фенотип, являются результатом взаимодействия генотипа с окружающей средой; способность гена фенотипически проявлять себя тем или иным образом называют пенетрантностью гена.

Свойство гена подавлять или быть подавленным в значительной мере зависит также от генного окружения — генотипической среды, в которой находится этот ген. Перенос гена в другое место хромосомы, влекущий за собой изменение его генного окружения, ведет к утрате этим геном своих свойств, в т.ч. даже такого свойства, выработанного в процессе длительной эволюции, как способность доминировать. Это явление называют эффектом положения гена. При возвращении гена в прежнее положение на хромосоме его способность доминировать восстанавливается.

Изучая механизмы регуляции функции гена, французские генетики Жакоб и Моно пришли к заключению, что существуют структурные и регуляторные гены. К структурным генам относятся гены, которые контролируют (кодируют) первичную структуру матричных, или информационных, РНК, а через них последовательность аминокислот в синтезируемых полипептидах. Другую группу структурных генов составляют гены, определяющие последовательность нуклеотидов в полинуклеотидных цепях рибосомной РНК и транспортной РНК.

Регуляторные гены контролируют синтез специфических веществ, так называемых ДНК-связывающих белков, которые регулируют активность структурных генов.

По мере увеличения возможностей генетического анализа были получены все новые доказательства того, что ген, являясь функциональной единицей, вместе с тем имеет весьма сложное строение. Первые доказательства сложности организации гена получили в 1929 г. советские ученые А.С. Серебровский, Н.П. Дубинин и И.И. Агол.

Наряду со структурными и регуляторными генами в молекулах ДНК были обнаружены участки повторяющихся нуклеотидных последовательностей, функции которых не известны, а также мигрирующие нуклеотидные последовательности — так называемые мобильные гены. Найдены также псевдогены, представляющие собой неактивные копии известных генов, но расположенные в других частях генома.

Средняя по размерам молекула белка содержит около 300 аминокислотных остатков. Следовательно, средний ген должен содержать не менее 1000—1500 нуклеотидов. Однако количество нуклеотидных пар в обычной молекуле ДНК по крайней мере в 10 раз превышает количество генов. Такая «избыточность» ДНК объясняется тем, что, например, у человека только 6—10% всей ДНК составляют кодирующие специфические нуклеотидные последовательности, остальные нуклеотиды в генетическом кодировании непосредственно не участвуют.

Ген представляет собой сложную микросистему, обеспечивающую жизнедеятельность клетки и организма в целом. Теория гена, постоянно углубляющаяся и развивающаяся, является основой генетической инженерии, конечной целью которой служит создание организмов с новыми наследственными свойствами, а также разработка способов лечения генетически обусловленных заболеваний.


4. Основная догма молекулярной биологии

Открытие химической основы жизни было одним из величайших открытий биологии XIX века, получившим в XX веке немало подтверждений. В природе нет никакой жизненной силы, как нет и существенного различия между материалом, из которого построены живые и неживые системы. Живой организм больше всего похож на крупный химический завод, в котором осуществляется множество химических реакций. На погрузочных платформах поступает сырье и транспортируются готовые продукты. Где-то в канцелярии — возможно, в виде компьютерных программ — хранятся инструкции по управлению всем заводом. Подобным образом в ядре клетки — «руководящем центре» — хранятся инструкции, управляющие химическим бизнесом клетки.

Эта гипотеза получила успешное развитие во второй половине XX века. Теперь нам понятно, как информация о химических реакциях в клетках передается из поколения в поколение и реализуется для обеспечения жизнедеятельности клетки. Вся информация в клетке хранится в молекуле ДНК — знаменитой двойной спирали, или «скрученной лестницы». Важная рабочая информация хранится на перекладинах этой лестницы, каждая их которых состоит из двух молекул азотистых оснований. Считывая информацию по одной цепи ДНК, вы получите последовательность оснований. Представьте себе эту последовательность как сообщение, написанное с помощью алфавита, в котором всего четыре буквы. Именно это сообщение и определяет поток химических реакций в клетке и, следовательно, особенности организма.

Гены, открытые Грегором Менделем — на самом деле не что иное как последовательности пар оснований на молекуле ДНК. А геном человека — совокупность всех его ДНК — содержит приблизительно 30 000–50 000 генов. У наиболее развитых организмов, в том числе и человека, гены часто бывают разделены фрагментами «бессмысленной», некодирующей ДНК, а у более простых организмов последовательность генов обычно непрерывна. В любом случае, клетка знает, как прочитать содержащуюся в генах информацию. У человека и других высокоразвитых организмов ДНК обвернута вокруг молекулярного остова, вместе с которым она образует хромосому. Вся ДНК человека помещается в 46 хромосомах.

Точно так же, как информацию с жесткого диска, хранящуюся в канцелярии завода, необходимо транслировать на все устройства в цехах завода, информация, хранящаяся в ДНК, должна быть транслирована с помощью клеточного технического обеспечения в химические процессы в «теле» клетки. Основная роль в этой химической трансляции принадлежит молекулам рибонуклеиновой кислоты, РНК. Мысленно разрежьте двуспиральную «лестницу»-ДНК вдоль на две половины, разъединяя «ступеньки», и замените все молекулы тимина (Т) на сходные с ними молекулы урацила (У) — и вы получите молекулу РНК. Когда необходимо транслировать какой-либо ген, специальные клеточные молекулы «расплетают» участок ДНК, содержащий этот ген. Теперь молекулы РНК, в огромном количестве плавающие в клеточной жидкости, могут присоединиться к свободным основаниям молекулы ДНК. В этом случае, так же как и в молекуле ДНК, могут образоваться лишь определенные связи. Например, с цитозином (Ц) молекулы ДНК может связаться только гуанин (Г) молекулы РНК. После того как все основания РНК выстроятся вдоль ДНК, специальные ферменты собирают из них полную молекулу РНК. Сообщение, записанное основаниями РНК, так же относится к исходной молекуле ДНК, как негатив к позитиву. В результате этого процесса информация, содержащаяся в гене ДНК, переписывается на РНК.

Этот класс молекул РНК называется матричными, или информационными РНК (мРНК, или иРНК). Поскольку мРНК намного короче, чем вся ДНК в хромосоме, они могут проникать через ядерные поры в цитоплазму клетки. Так мРНК переносят информацию из ядра («руководящего центра») в «тело» клетки.

В «теле» клетки находятся молекулы РНК двух других классов, и они оба играют ключевую роль в окончательной сборке молекулы белка, кодируемого геном. Одни из них — рибосомные РНК, или рРНК. Они входят в состав клеточной структуры под названием рибосома. Рибосому можно сравнить с конвейером, на котором происходит сборка.

Другие находятся в «теле» клетки и называются транспортные РНК, или тРНК. Эти молекулы устроены так: с одной стороны находятся три азотистых основания, а с другой — участок для присоединения аминокислоты. Эти три основания на молекуле тРНК могут связываться с парными основаниями молекулы мРНК. (Существует 64 молекулы тРНК — четыре в третьей степени — и каждая из них может присоединиться только к одному триплету свободных оснований на мРНК.) Таким образом, процесс сборки белка представляет собой присоединение определенной молекулы тРНК, несущей на себе аминокислоту, к молекуле мРНК. В конце концов, все молекулы тРНК присоединятся к мРНК, и по другую сторону тРНК выстроится цепочка аминокислот, расположенных в определенном порядке.

Последовательность аминокислот — это, как известно, первичная структура белка. Другие ферменты завершают сборку, и конечным продуктом оказывается белок, первичная структура которого определена сообщением, записанным на гене молекулы ДНК. Затем этот белок сворачивается, принимая окончательную форму, и может выступать в роли фермента, катализирующего одну химическую реакцию в клетке.

Хотя на ДНК различных живых организмов записаны разные сообщения, все они записаны с использованием одного и того же генетического кода — у всех организмов каждому триплету оснований на ДНК соответствуют одна и та же аминокислота в образовавшемся белке. Это сходство всех живых организмов — наиболее весомое доказательство теории эволюции, поскольку оно подразумевает, что человек и другие живые организмы произошли от одного биохимического предка.


5. Биологическая роль ДНК

Цитогенетические исследования в 20—30-х гг. 20 в. свидетельствовали о том, что передача и хранение наследственных признаков связаны с хромосомами, находящимися в ядерном веществе. То, что наследственным веществом является именно ДНК, а не белок, стало ясным в результате исследований, проведенных в 40-х гг. 20 в. на бактериях и бактериофагах.

В 1944 г. Эйвери, Мак-Лауд и Мак-Карти установили природу трансформирующего фактора у бактерий. Им оказалась ДНК. Процесс трансформации состоит, несомненно, из ряда стадий: обратимой сорбции молекул ДНК бактериальной клеткой; внедрения этих молекул внутрь клетки; интеграции молекулы чужой ДНК в хромосому клетки, расщепления образовавшейся сложной структуры и ее перехода в рекомбинанты.

При исследовании бактериальных вирусов под электронным микроскопом пли при помощи радиоактивной метки, вводимой в белок или в ДНК бактериофага, было показано, что вирус, фиксируясь на поверхности бактериальной клетки, вводит в нее только молекулу ДНК, оставляя снаружи свою белковую оболочку. Молекула ДНК вируса, попавшая в клетку, несущая в себе всю наследственную информацию (геном) вируса, вызывает образование в клетке новых вирусных частиц, их размножение и гибель клетки от лизиса.

Некоторые, так называемые умеренные, фаги у части бактериальных клеток не вызывают явных признаков заражения, однако их ДНК, попадая в клетку, прочно связывается с геномом самой бактерии, интегрируясь с ДНК бактериальной клетки. Многие поколения таких бактерий несут в себе бактериофаг в скрытом виде, не проявляя признаков нарушения жизнедеятельности. Однако при неблагоприятных условиях и при действии каких-либо повреждающих факторов, например ионизирующей или ультрафиолетовой радиации, вирус в таких бактериях начинает размножаться и вызывает лизис (гибель) бактерий. ДНК вируса настолько прочно связывается с ДНК бактерий, что заражение вирусом, полученным от лизогенных бактерий, сопровождается переносом вместе с ДНК вируса части ДНК бактерий, с которой передаются некоторые наследственные свойства этих бактерий, отсутствующие и у вновь заражаемых бактерий, и у самого вируса. Это явление, сходное с трансформацией, получило название трансдукции.

Последовательность нуклоотидов в цепи ДНК переписывается в комплементарную ей последовательность нуклеотидов в молекуле РНК — так называемая транскрипция. Процесс этот осуществляется при участии фермента РНК-полимеразы. Генетическая информация, переписанная с ДНК на РНК, в конечном счете определяет первичную структуру (последовательность   аминокислотных остатков в строящейся молекуле белка). При помощи электронной микроскопии удалось увидеть рост цепей РНК на матрице ДНК, то есть работу гена на уровне транскрипции.

В процессе реализации или выражения генов имеет место кодирование генетической информации. Показано, что три последовательно расположенных нуклеотидных остатка (триплет) в цепи ДНК кодируют комплементарный триплет в цепи РНК, который в свою очередь контролирует включение одной, строго определенной аминокислоты в полипептидную цепь синтезирующегося белка. Установлено, что полипептидная цепь синтезируется колинеарно с ДНК, то есть в соответствии с линейным расположением триплетов ДНК. Известно, какие именно триплеты кодируют включение каждой аминокислоты.

Последовательность нуклеотидов ДНК, кодирующая образование определенной полипептидной цепи, представляет собой структурный ген, или цистрон. Изменение даже одной пары нуклеотидов в цистроне (точковая мутация) может привести к изменению структуры белка и потере им биологического активности. Такие точковые мутации могут представлять собой транзиции (замену пары нуклеотндов ГЦ на AT или наоборот), трансверсии (замена AT на ТА или ГЦ на Ц Г, то есть перемещение комплементарных оснований из одной цепи в другую), вставки пары нуклеотидов или их делецию (выпадение). Трансверсии и транзиции приводят обычно к замене одной аминокислоты в строящейся полипептидной цепи, тогда как вставки и делении вызывают изменение порядка считывания и приводят к глубокому нарушению структуры белка. Вставка же или делеция сразу трех пар нуклеотидов, то есть целого триплета, восстанавливает последовательность считывания, что и послужило одним из важнейших доказательств триплетности кода.

У высших организмов количество ДНК на геном достаточно для кодирования миллионов белков. В действительности число генов у человека и высших животных по крайней мере на порядок ниже и находится, по-видимому, между 10 000 и 100 000. Огромное количество избыточной ДНК, таким образом, не несет структурных генов и выполняет иные функции. Оказалось, что часть ДНК вообще не участвует в процессе транскрипции, а преобладающая часть РНК, синтезированной на матрице ДНК у высших организмов, претерпевает распад внутри клеточного ядра, не участвуя в синтезе клеточных белков. В связи с этим Г.П. Георгиевым была высказана гипотеза, согласно которой оперон (последовательность генов, контролирующих синтез ферментов, участвующих в катализе всех этапов одного и того же процесса) у высших организмов содержит большое число регуляторных генов, расположенных в начале считывания. Синтезирующаяся на таком опероне гигантская молекула РНК распадается в процессе ее переноса в цитоплазму, куда поступает только собственно информационная РНК, содержащая структурные гены и кодирующая синтез клеточных белков. Остальная часть этой РНК имеет регуляторные функции и распадается внутри ядра.

Особенностью высших организмов является также дифференцировка клеток и тканей. Гены, содержащиеся в ДНК каждой диплоидной клетки одного и того же организма (геном), качественно и количественно совершенно одинаковы, однако тот факт, что разные ткани и клетки резко различны по своему составу, строению и функциям, объясняется тем, что в них синтезируются неодинаковые белки. Таким образом, помимо регуляции активности действующих генов, при дифференцировке имеет место выключение или блокирование большей части генов, причем обычно активной остается небольшая часть генома, а в некоторых случаях синтезируется лишь один или несколько белков, например синтез гемоглобина в ретикулоцитах. Механизмы диффе-ронцпровкп во многом не ясны, однако показано, что белки, входящие в состав дезокснрибонуклеопро-теидов хроматина, оказывают выраженное действие на транскрипцию. Гистоны подавляют этот процесс, а кислые белки могут активировать его. Неактивные участки хроматина цитологически представляются более плотными, а в процессе транскрипции, напротив, хроматин выглядит более рыхлым и нити ДНК, по-видимому, частично отделяются от гистонов. Различными методами показано, что транскрипция ДНК происходит в разрыхленных участках хроматина, в так называемых пуфах, представляющих собой вздутие хромосом в области действующих генов.


6. Генетические механизмы и эволюция

Генетическая теория гласит, что признаки особей каждого поколения передаются следующему поколению через единицы наследственности, называемые генами. Крупные сложные молекулы ДНК состоят из четырех типов субъединиц, называемых нуклеотидами, и имеют структуру двойной спирали. Информация, содержащаяся в каждом гене, закодирована особым порядком расположения этих субъединиц. Поскольку каждый ген состоит примерно из 10 000 нуклеотидов, выстроенных в определенной последовательности, существует великое множество комбинаций нуклеотидов, а соответственно и множество различных последовательностей, являющихся единицами генетической информации.

Определение последовательности нуклеотидов, образующих определенный ген, стало теперь не только возможным, но даже довольно обычным делом. Более того, ген можно синтезировать, а затем клонировать, получив таким образом миллионы копий. Если какое-то заболевание человека вызвано мутацией гена, который в результате не функционирует надлежащим образом, в клетку может быть введен нормальный синтезированный ген, и он будет выполнять необходимую функцию. Эта процедура называется генной терапией. Грандиозный проект «Геном человека» призван выяснить нуклеотидные последовательности, образующие все гены человеческого генома.

Одно из важнейших обобщений современной биологии, формулируемое иногда как правило «один ген – один фермент – одна метаболическая реакция», было выдвинуто в 1941 американскими генетиками Дж.Бидлом и Э.Тейтемом. Согласно этой гипотезе, любая биохимическая реакция – как в развивающемся, так и в зрелом организме – контролируется определенным ферментом, а фермент этот в свою очередь контролируется одним геном. Информация, заложенная в каждом гене, передается от одного поколения другому специальным генетическим кодом, который определяется линейной последовательностью нуклеотидов. При образовании новых клеток каждый ген реплицируется, и в процессе деления каждая из дочерних клеток получает точную копию всего кода. В каждом поколении клеток происходит транскрипция генетического кода, что позволяет использовать наследственную информацию для регуляции синтеза специфических ферментов и других белков, существующих в клетках.

В 1953 американский биолог Дж.Уотсон и британский биохимик Ф.Крик сформулировали теорию, объясняющую, каким образом структура молекулы ДНК обеспечивает основные свойства генов – способность к репликации, к передаче информации и мутированию. На основании этой теории оказалось возможным сделать определенные предсказания о генетической регуляции синтеза белка и подтвердить их экспериментально.

Развитие с середины 1970-х годов генной инженерии, т.е. технологии получения рекомбинантных ДНК, значительно изменило характер исследований, проводимых в области генетики, биологии развития и эволюции. Разработка методов клонирования ДНК и проведения полимеразной цепной реакции позволяют получать в достаточном количестве необходимый генетический материал, включая рекомбинантные (гибридные) ДНК. Эти методы используются для выяснения тонкой структуры генетического аппарата и отношений между генами и их специфическими продуктами – полипептидами. Вводя в клетки рекомбинантную ДНК, удалось получить штаммы бактерий, способные синтезировать важные для медицины белки, например человеческий инсулин, гормон роста человека и многие другие соединения.

Значительный прогресс был достигнут в области изучения генетики человека. В частности, проведены исследования таких наследственных болезней, как серповидноклеточная анемия и муковисцидоз. Изучение раковых клеток привело к открытию онкогенов, превращающих нормальные клетки в злокачественные. Исследования, проводимые на вирусах, бактериях, дрожжах, плодовых мушках и мышах, позволили получить обширную информацию, касающуюся молекулярных механизмов наследственности. Теперь гены одних организмов могут быть перенесены в клетки других высокоразвитых организмов, например мышей, которые после такой процедуры называются трансгенными. Чтобы осуществить операцию по внедрению чужеродных генов в генетический аппарат млекопитающих, разработан целый ряд специальных методов.

Одно из наиболее удивительных открытий в генетике – это обнаружение двух типов входящих в состав генов полинуклеотидов: интронов и экзонов. Генетическая информация кодируется и передается только экзонами, функции же интронов до конца не выяснены.


Заключение

Каждый вид ДНК со своей клеткой есть результат борьбы химических форм за устойчивость – одна из выживших форм. То, что оказалось не устойчивым, исчезло. Устойчивость (то есть, жизнеспособность) определённого вида ДНК обеспечивается тем, что соответствующая клетка и организм способны обеспечить себе условия для выполнения копирования. Процесс деления клетки начинается тогда, когда имеются в наличии все химические материалы, необходимые для построения копии. Если поступление этих материалов в клетку задерживается, то процесс копирования ДНК приостанавливается вплоть до гибели клетки.

Хранящуюся в ДНК программу производства белков можно интерпретировать как информацию о том наборе химических веществ, который необходим для деления клетки. Эта информация очень опосредованно связана с формой и поведением живого существа. Большое количество элементов в ДНК позволяет выполнять тонкую регулировку химического состава клетки. В зависимости от деятельности окружающих клеток, то есть от окружающих химических и механических воздействий, клетка изменяет свою жизнь так, чтобы приобрести необходимые вещества для построения копии набора хромосом. Это особенно заметно на этапе морфогенеза. Вот почему у живых существ формируются ткани и органы, выполняющие разные химические, механические и другие функции при том, что ДНК всех клеток одинаковы. Механизм морфогенеза существенно использует саморегулирование активности ДНК в зависимости от биохимического состава клетки.

Изменение молекулы ДНК, например, в результате мутации, приводит к изменению жизнедеятельности и условий деления клетки. Если в результате деления такой клетки был построен живой организм, то каждая клетка организма содержит копию изменённой молекулы ДНК, что должно отразиться на функциях (и даже анатомии) всех тканей и органов.

Поскольку каждый ген управляет синтезом определённого белка, а ассортимент белков не велик, то генетическое изменение может наблюдаться, как «включение» или «отключение» определённой функции или признака организма, например, как появление генетически обусловленной болезни. Однако, поскольку одинаковые ДНК содержатся во всех клетках организма, то в общем случае, изменение ДНК должно влиять на все функции организма. ДНК не может содержать участков (генов), отвечающих строго за один признак.

Тем не менее, остается надеяться, что модификация некоторых «генов» может привести к «полезным» изменениям организма. Опыт выведения пород животных и растений с желаемыми признаками говорит, что эта надежда обоснована.


Литература

1.        Ашмарин И.П. Молекулярная биология, М., 2004;

2.        Бреслер С.Е. Молекулярная биология, СП-Б., 2003,

3.        Георгиев Г.П. О структуре единиц транскрипции в клетках эукариотов, Усл. биологического химии, под ред. Б. Н. Степаненко, т. 14, с. 3, М., 2003,

4.        Дэвилсон Дж. Биохимия нуклеиновых кислот, пер. с англ., М., 2006:

5.        Клеточное ядро, Морфология, физиология, биохимия, под ред. И. Б. Збарского и Г. П. Георгиева, М., 2002;

6.        Лилли Р. Д. Патологическая техника и практическая гистохимия, пер. с англ., М., 1969,

7.        Методы исследования нуклеиновых кислот, пер. с англ., под ред. А. Н. Белозерского, М., 2000;

8.        Строение ДНК и положение организмов в системе, под ред. А. Н. Белозерского и А. С. Антонова, М., 2002;

9.        Уотсон Дж. Молекулярная биология гена, пер. с англ., М., 1967;

10.   Химия и биохимия нуклеиновых кислот, под ред. И. Б. Збарского и С.С. Дебова, Л., 1968;

11.   Бочков Н.П. Генетика человека, М., 1978;

12.   Дубинин Н.П. Ген. БМЭ, 3-е изд., т. 5, с. 237, М., 1977;

13.   Льюин Б. Гены, пер. с англ., М., 1987.

Информация о работе ДНК – основа генетического материала