Обзор аварий на радиационно-опасных объектах в Мире

Автор работы: Пользователь скрыл имя, 25 Февраля 2012 в 16:47, реферат

Описание работы

В настоящее время практически в любой отрасли хозяйства и науки во все более возрастающих масштабах используются радиоактивные вещества и источники ионизирующих излучений. Особенно высокими темпами развивается ядерная энергетика. Атомная наука и техника таят в себе огромные возможности, но вместе с тем и большую опасность для людей и окружающей среды, о чем свидетельствуют аварии на атомных станциях в США, Англии, Франции, Японии и в СССР (Чернобыльская). Атомные установки эксплуатируются на ледоколах и лихтеровозах, на крейсерах и подводных лодках, в космических аппаратах.

Содержание работы

Введение 3
Радиационно-опасный объект 4
Основные данные об авариях на радиационно-опасных объектах 8
Последствия аварий для населения и территории 18
Заключение 20
Литература 21

Файлы: 1 файл

Rabota.doc

— 96.50 Кб (Скачать файл)

В апреле 1967 года произошел очередной радиационный инцидент в ПО «Маяк». Озеро Карачай, которое ПО «Маяк» использовало для сброса жидких радиоактивных отходов, сильно обмелело; при этом оголилось 2-3 гектара прибрежной полосы и 2-3 гектара дна озера. В результате ветрового подъема донных отложений с оголившихся участков дна водоема была вынесена радиоактивная пыль около 600 Ku активности. Была загрязнена территория в 1 тысячу 800 квадратных километров, на которой проживало около 40 тысяч человек.

 

В 1969 году произошла авария подземного ядерного реактора в Люценсе (Швейцария). Пещеру, где находился реактор, зараженную радиоактивными выбросами, пришлось навсегда замуровать. В том же году произошла авария во Франции: на АЭС «Святой Лаврентий» взорвался запущенный реактор мощностью 500 мВт. Оказалось, что во время ночной смены оператор по невнимательности неправильно загрузил топливный канал. В результате часть элементов перегрелась и расплавилась, вытекло около 50 кг жидкого ядерного топлива.

18 января 1970 года произошла радиационная катастрофа на заводе «Красное Сормово» (Нижний Новгород). При строительстве атомной подводной лодки К 320 произошел неразрешенный запуск реактора, который отработал на запредельной мощности около 15 секунд. При этом произошло радиоактивное заражение зоны цеха, в котором строилось судно.

В цехе находилось около 1000 рабочих. Радиоактивного заражения местности удалось  избежать из-за закрытости цеха. В тот  день многие ушли домой, не получив  необходимой дезактивационной обработки и медицинской помощи. Шестерых пострадавших доставили в московскую больницу , трое из них скончались через неделю с диагнозом острая лучевая болезнь, с остальных взяли подписку о неразглашении произошедшего на 25 лет.

Основные работы по ликвидации аварии продолжались до 24 апреля 1970 года. В них приняло участие более тысячи человек. К январю 2005 года в живых из них осталось 380 человек.

Семичасовой пожар 22 марта 1975 года на реакторе АЭС «Браунс Ферри» в США (штат Алабама) обошелся в 10 млн долларов. Все случилось после того, как рабочий с зажженной свечой в руке полез заделать протечку воздуха в бетонной стене. Огонь был подхвачен сквозняком и распространился через кабельный канал. АЭС на год была выведена из строя.

Самым серьезным инцидентом в атомной энергетике США стала авария на АЭС Тримайл-Айленд в штате Пенсильвания, произошедшая 28 марта 1979 года. В результате серии сбоев в работе оборудования и грубых ошибок операторов на втором энергоблоке АЭС произошло расплавление 53% активной зоны реактора. Произошел выброс в атмосферу инертных радиоактивных газов – ксенона и йода Кроме того, в реку Сукуахана было сброшено 185 кубических метров слаборадиоактивной воды. Из района, подвергшегося радиационному воздействию, было эвакуировано 200 тысяч человек.

В ночь с 25 на 26 апреля 1986 года на четвертом блоке Чернобыльской АЭС (Украина) произошла крупнейшая ядерная авария в мире, с частичным разрушением активной зоны реактора и выходом осколков деления за пределы зоны. По свидетельству специалистов, авария произошла из-за попытки проделать эксперимент по снятию дополнительной энергии во время работы основного атомного реактора. В атмосферу было выброшено 190 тонн радиоактивных веществ. 8 из 140 тонн радиоактивного топлива реактора оказались в воздухе. Другие опасные вещества продолжали покидать реактор в результате пожара, длившегося почти две недели. Люди в Чернобыле подверглись облучению в 90 раз большему, чем при падении бомбы на Хиросиму. В результате аварии произошло радиоактивное заражение в радиусе 30 км. Загрязнена территория площадью 160 тысяч квадратных километров. Пострадали северная часть Украины, Беларусь и запад России. Радиационному загрязнению подверглись 19 российских регионов с территорией почти 60 тысяч квадратных километров и с населением 2,6 миллиона человек.

30 сентября 1999 года произошла крупнейшая авария в истории атомной энергетики Японии. На заводе по изготовлению топлива для АЭС в научном городке Токаймура (префектура Ибараки) из-за ошибки персонала началась неуправляемая цепная реакция, которая продолжалась в течение 17 часов. Облучению подверглись 439 человек, 119 из них получили дозу, превышающую ежегодно допустимый уровень. Трое рабочих получили критические дозы облучения. Двое из них скончались.

9 августа 2004 года произошла авария на АЭС «Михама», расположенной в 320 километрах к западу от Токио на о.Хонсю. В турбине третьего реактора произошел мощный выброс пара температурой около 200 градусов по Цельсию. Находившиеся рядом сотрудники АЭС получили серьезные ожоги. В момент аварии в здании, где расположен третий реактор, находились около 200 человек. Утечки радиоактивных материалов в результате аварии не обнаружено. Четыре человека погибли, 18 – серьезно пострадали. Авария стала самой серьезной по числу жертв на АЭС в Японии.

 

Последствия аварий для населения и территории

 

    Рассмотрим  образование поражающих факторов и их воздействие при аварии на АЭС.

    1.   Световое излучение и явление проникающей радиации может оказать воздействие, в основном, на работающую смену персонала.

    2.   Радиоактивное заражение местности в результате выбросов продуктов распада в атмосферу во всех случаях будет значительным и на больших площадях.

    3.   Ударная волна (сейсмическая) образуется только при ядерном взрыве реактора, при тепловом взрыве ее действие на окружающую среду незначительно.

    Разберем  особенности радиоактивного заражения  местности при авариях на АЭС, учитывая в первую очередь опыт аварии на ЧАЭС. Источником радиоактивного заражения  выбросов в атмосферу из аварийного реактора явились продукты цепной реакции. В выбросах было обнаружено 23 основных радионуклида.

    В первые минуты после взрыва и образования  радиоактивного облака наибольшую угрозу для здоровья людей представляли изотопы так называемых благородных  газов (ксеноны), но они быстро рассеиваются в атмосфере, теряя свою активность. Таким образом, радиоактивное заражение не образуется.

    В последующем воздействуют на людей  коротко живущие радиоактивные  компоненты, такие как Йод -131(8 суток).

    Затем воздействуют на организм долгоживущие изотопы, Цезий-137 и Стронций-90 (до 30 лет).

    На  фоне тугоплавкости большинство  радионуклидов,  такие как теллур, йод, цезий обладают высокой летучестью. Вот почему аварийные выбросы реакторов всегда обогащены этими радионуклидами, из которых йод и цезий имеют наиболее важное воздействие на организм человека и животный мир. Состав аварийного выброса продуктов деления реактора существенно отличается от состава продуктов ядерного взрыва. При ядерном взрыве преобладают радионуклиды с коротким периодом полураспада. Поэтому на следе радиоактивного облака происходит быстрый спад мощности дозы излучения. При авариях на АЭС характерно радиоактивное загрязнение атмосферы и местности легколетучими радионуклидами (Йод-131, Цезий-137 и Стронций-90), а, во-вторых, Цезий-137 и Стронций-90 обладают длительными периодами полураспада. Поэтому такого резкого уменьшения мощности дозы, как это имеет место на следе ядерного взрыва, не наблюдается.

    И еще одна особенность. При ядерном  взрыве и образовании следа для людей главную опасность представляет внешнее облучение (90-95% от общей дозы). При аварии на АЭС с выбросом активного материала картина иная. Значительная часть продуктов деления ядерного топлива находится в парообразном и аэрозольном состоянии. Вот почему доза внешнего облучения здесь составляет 15%, а внутреннего – 85%.

    Загрязнение местности от Чернобыльской катастрофы происходило в ближайшей зоне 80 км в течение 4-5 суток, а в дальней  зоне примерно 15 дней. Наиболее сложная  и опасная радиационная обстановка сложилась в 30-км зоне от АЭС, в Припяти и Чернобыле. Из-за этого оттуда было эвакуировано все население. К началу 1990г. во многих районах мощность дозы уменьшилась  и приблизилась к фоновым значениям 12-18 мкР/ч. Припять и на сегодня представляет опасность для жизни.

    Специалисты выделяют следующие потенциальные последствия радиационных аварий:

    1.   немедленные смертельные случаи и травмы среди работников предприятия и населения;

    2.   латентные смертельные случаи заболевания настоящих и будущих поколений, в том числе изменения в соматических клетках, приводящие к возникновению онкологических заболеваний, генетические мутации, оказывающие влияние на будущие поколения, влияние на зародыш и плод вследствие облучения матери в период беременности;

    3.   материальный ущерб и радиоактивное загрязнение земли и экосистем;

    4.   ущерб для общества, связанный с боязнью относительно потенциальной возможности использования ядерного топлива для создания ядерного оружия.

    К последствиям  серьезных радиационных аварий относится и наличие косвенного риска для здоровья и жизни людей. Косвенный риск возникает при непосредственном осуществлении мер безопасности, эвакуации при аварии. Например: эвакуационные мероприятия, вызванные радиационной аварией, обусловливают возникновение множества косвенных рисков: смертельные случаи вследствие дорожно-транспортных происшествий, увеличение числа сердечных приступов у эвакуируемого населения, психические травмы, вызванные стрессовой ситуацией во время эвакуации, и т.п.

 

Заключение

    Итак,  при правильном использовании и  соблюдении всех мер безопасности, а также при безопасном захоронении  отходов, атомные реакторы являются наиболее экологичным и перспективным  методом получения энергии, поэтому  отказаться от него или сократить  его применение не представляется возможным.

    Следовательно, необходимо обеспечивать:

    1. Изоляцию РОО (в том числе  и ядерного оружия) от крупных  городов

    2. Естественную безопасность ядерных  реакторов (создание надежных  систем предотвращения аварий, систем  оповещения, аварийных систем отключения, единой системы эвакуации персонала и населения, повышение износостойкости компонентов реактора и продуманности его конструкции)

    3. Надежную охрану РОО (в том  числе и ядерного оружия), ограничение  доступа к РОО.

    4. Разработку новых методов ликвидации последствий радиационных аварий

    5. Обучение органов ликвидации  и населения способам защиты  от радиации, порядку эвакуации  и др.

    Эти и множество других мер помогут  предотвратить большинство происшествий на РОО и избежать большого количества потерь при ЧС на РОО.

 

    

Литература

    1. ЧС техногенного характера ., адрес

    http://bezhede.ru/index.php?option=com_content&view=article&id=87&Itemid=106

    1. Крупнейшие радиационные аварии и катастрофы в мире .,адрес

    http://ru.wikipedia.org/wiki/WikiLeaks 

Информация о работе Обзор аварий на радиационно-опасных объектах в Мире