Методы и приборы для определения параметров микроклимата и чистоты воздуха

Автор работы: Пользователь скрыл имя, 30 Октября 2010 в 23:04, Не определен

Описание работы

Контрольная работа

Файлы: 1 файл

Вопрос42 и 75.doc

— 129.50 Кб (Скачать файл)

    Содержание 

      Вопрос 42. Методы и приборы для определения  параметров микроклимата и чистоты  воздуха…………………………………….3

      Вопрос 75. Методы очистки промышленных выбросов от газообразных примесей………..………………………………………9

      Задача  14.4……………………………...……………………….16

      Задача  7.6………………………………………………………..18

      Список  используемой литературы…………………………….21

 

     Вопрос 42. Методы и  приборы для определения  параметров микроклимата и чистоты воздуха 

    Микроклимат – это метеорологические условия  помещений, которые определяются действующими на организм человека сочетаниями температуры, относительной влажности, скорости движения воздуха, а также температурой поверхностей, ограждающих конструкций, технологического оборудования и интенсивностью теплового облучения, (Вт/м2), ультрафиолетовым облучением.

    Допустимые  нормы микроклимата. Это такое сочетание параметров микроклимата, которое при длительном и систематическом воздействии на человека может вызвать быстро приходящие и быстро нормализующиеся изменения теплового состояния организма, сопровождающиеся напряжением механизмов терморегуляций, не выходящих за пределы физиологических приспособительных возможностей.

    Оптимальные показатели предусматриваются для  всей рабочей зоны, допустимые устанавливаются раздельно для постоянных и непостоянных рабочих мест в тех случаях, когда по технологическим, техническим или экономическим причинам невозможно обеспечить оптимальные нормы.

    Приборы контроля:

  • температуры и относительной влажности – аспирационные психрометры МВ-4м, М-34, электротермометры.
  • скорости движения воздуха – анемометры (крыльчатые АСО-3, АП –1м, чашечные МС-13), термоанемометры ТАМ-1, кататермометры (цилиндрические и шариковые).
  • тепловое излучение – актинометры (инспекторский ИМО-5), радиометр «Аргус 3».

    Могут возникать ощущения дискомфорта, может  ухудшиться самочувствие и понижаться работоспособность.

      Оптимальные и допустимые параметры  не вызывают повреждений или  нарушений в состоянии здоровья.

    Как правило, при кондиционировании  производственных помещений должны соблюдаться оптимальные параметры  микроклиматических условий. Допустимые параметры предусматриваются для помещений с большими тепловыделениями или большими площадями.

    Скорость  движения воздуха. Замеряется анемометрами, электротермоанемометрами и кататермометрами. Выбор прибора для измерения обусловлен целями замеров.

    Анемометры  используются крыльчатые (для замеров  скоростей от 1 до 10 м/с), чашечные (для  замеров скоростей от 1 до 30 м/с) и  электроанемометры (для замера скоростей  воздуха от 0 до 5 м/с) (рис. 2). Анемометр  состоит из вращающегося под действием воздушного потока воспринимающего механизма (крыльчатки и чашечки) и счетчика, снабженного тремя стрелками, указывающими на соответствующих шкалах величину пути, пройденного воздушным потоком.

    

    Измерения параметров микроклимата проводятся в холодный и теплый периоды года в течение одного дня в начале, середине и в конце рабочей смены. При колебаниях микроклиматических условий, связанных с технологическими и другими причинами, измерения проводятся также при наибольших и наименьших величинах термических нагрузок на работающих в течение рабочей смены.

    Оценка  полученных величин проводится путем  сравнения их с нормативными величинами. Электротермоанемометр предназначен для измерения температуры (10 до 600С) и скорости движения воздуха в пределах от 0,03 до 5 м/с.

    Кататермометр используется для измерения малых  скоростей движения воздуха от 10,1 до 1,5 м/с. Он представляет собой спиртовой  термометр, шкала которого разделена  на три градуса (35 – 380С).

    Параметры микроклимата оказывают совместное воздействие на человека: на его самоощущение, работоспособность и здоровье. Так, действие низких температур, приводящих к охлаждению организма, резко усиливается при повышенной влажности. В этих условиях большая скорость движения воздуха вызывает увеличение теплопотерь конвекций и испарением и ведет к охлаждению организма. На этом основании используются интегральные показатели микроклимата: эффективная температура, учитывающая одновременное воздействие температуры и подвижности воздуха, и эффективно-эквивалентная температура (ЭЭТ), учитывающая воздействие температуры, относительной влажности и скорости движения воздуха. Определение ЭЭТ проводится простыми и доступными приборами (психрометр и анемометр). Показания сухого и влажного термометров и замеренная скорость движения воздуха накладываются на номограмму, которая позволяет определить основные характеристики микроклимата, зоны комфорта, дискомфорта и недопустимую (рис. 3).

    Мероприятия по нормализации микроклимата. Наиболее эффективным мероприятием является предупреждение поступления избыточного тепла и влаги в воздух производственных помещений, включающее следующие направления: теплоизоляцию нагретого оборудования, коммуникаций и ограждений, обеспечивающую температуру на поверхности оборудования не выше 450С (для оборудования, внутри которого температура не превышает 1000С, а температура на поверхности не превышает 350С); быстрое удаление из цеха на специально оборудованные участки нагретых изделий; экранирование открытых поверхностей печей.

    Важным мероприятием нормализации микроклимата является вентиляция. В помещениях с интенсивными источниками конвекционного и лучистого тепла используются аэрация, обеспечивающая удаление избыточного тепла в верхней зоне помещения через шахты, окна и т.д., общеобменная механическая приточно-вытяжная вентиляции. Количество воздуха L (в м3/ч), необходимого для обеспечения нормируемых параметров в помещениях с избытками тепловыделения, рассчитывается по формуле:

где   Qизб – избыточная теплота, выделяющаяся в помещение, Дж/с,

        Qизб=Qоборуд +Qпродукц+Qэлектродвиг+Qлюдей+Q\электроосвещ;

         C – удельная теплоемкость воздуха, С=1кДж/(кг · К);

         γ – плотность приточного воздуха, кг/м3;

               tух – температура уходящего воздуха, 0С (принимается на 3-40С выше температуры воздуха в рабочей зоне);

               tпр – температура приточного воздуха (при наличии тепловыделений в помещении принимается на 5-80С ниже расчетной температуры в рабочей зоне).

    Количество  воздуха L (в м3/ч) необходимого для обеспечения нормируемых параметров в помещениях с влаговыделениями вычисляется по формуле:

    

где   W – количество выделяющейся избыточной влаги, кг/ч;

              dух, dпр – влагосодержание уходящего и приточного воздуха, г/кг (dух и dпр определяются по I-d диаграмме по температуре и относительной влажности);

         γ – плотность воздуха при данной температуре, кг/м3;

    Кратность воздухообмена в помещении n (в ч-1)характеризует интенсивность вентиляции и показывает сколько раз в час необходимо заменить воздух помещения.

где   L – количество необходимого воздуха,  м3/ч;

        V – объем вентилируемого помещения, м3.

    Эффективным мероприятием является кондиционирование  воздуха.

    В системах вентиляции и кондиционирования допускается частичная рециркуляция воздуха, т.е. частичный возврат отработанного воздуха в помещении. При этом расход наружного воздуха в помещениях с объемом на каждого работающего не менее 20 м3 должен составлять не менее 30 м3/ч на одного работающего; в помещениях с объемом на каждого работающего более 20 м3 – не менее 20 м3/ч на одного работающего. Расход наружного воздуха при рециркуляции составляет не менее 10% общего воздухообмена.

    Не  следует предусматривать рециркуляцию воздуха в системах вентиляции и кондиционирования воздуха для следующих помещений:

  • в воздухе которых выделяются вредные вещества 1,2 и 3-го класса опасности, за исключением помещений, в которых количество вредных веществ, находящихся в технологическом оборудовании, таково, что при неработающей вентиляции не превышают предельно допустимых, установленных для рабочей зоны;
  • в воздухе которых содержатся болезнетворные бактерии, вирусы и грибки;
  • в воздухе которых имеются резко выраженные неприятные запахи.

    При невозможности по техническим причинам достигнуть указанных температур вблизи источников значительного лучистого и конвекционного тепла предусматривают мероприятия по защите работающих от возможного перегревания: воздушное душирование, экранирование, высокодисперсное распыление воды на облучаемые поверхности, кабины или поверхности радиационного охлаждения, тепловые завесы и помещения для отдыха.

    Воздушное душирование предусматривается  на постоянных рабочих местах, характеризуемых воздействием лучистого тепла работников.

    Оборудование, являющееся источником влаговыделений, оснащается аспирируемым укрытием, например бутылкомоечные машины на предприятиях ликероводочных, пивобезалкогольных напитков и т.д.

    Рациональный  режим труда и отдыха работников в условиях воздействия высоких  и низких температур осуществляется путем введения дополнительных перерывов в рабочей смене, которые проводятся в специально оборудованных помещениях – комнатах отдыха или комнатах психологической разгрузки.

 

Вопрос 75. Методы очистки промышленных выбросов от газообразных примесей 

      К чрезвычайно опасным отходам, относятся отходы содержащие ртуть и ее соединения, в том числе сулему (HgCl2), хромовокислый и цианистый калий, соединения сурьмы, в том числе SbCl3 - треххлорную сурьму, бензапирен и др.

      Токсичность соединений ртути (Hg) заключается во вредном воздействии катиона Hg2+. В организм ртуть попадает, как правило, в неионной форме. Ртуть вступает в соединение с белковыми молекулами в крови, в результате чего образуются прочные или не очень комплексные соединения - металлопротеиды. При этом страдают тиоловые энзимы и в организме возникают глубокие нарушения функций центральной нервной системы, что приводит к инертности корковых процессов в мозге.

      Воздействие соединений ртути при остром отравлении у животных проявляется в потере аппетита, жажде, общей слабости, возникновении катаракты на слизистой глаз, возможны судороги и внезапная смерть при поражении двигательных узлов сердца и спинного мозга. У выживших через 1 – 2 часа происходит поражение желудочно-кишечного тракта, через 5 суток – поражение почек, перерождение клеток печени.

      У человека при отравлении сулемой  и другими солями ртути - головные боли, поражение десен, стоматит, набухание лимфатических и слюнных желез, иногда повышенная температура. В тяжелых случаях некроз почек и через 5-6 дней смерть. В достаточно легких случаях - потеря аппетита, тошнота, рвота (иногда с кровью), язва желудка и двенадцатиперстной кишки. При хроническом отравлении у людей и животных поражается нервная система (резкая переменчивость активности), изменения в клетках коры больших полушарий мозга, ствола спинного мозга, периферийных нервах. Среди людей, больных туберкулезом, при поражении солями ртути наблюдается высокая смертность.

      Общее воздействие на организм цианида  калия (KCN) и других солей синильной кислоты (HCN) вызывает нарушение дыхания, резкое понижение способностей тканей потреблять доставляемый кислород. При хроническом отравлении возможно нарушение продуцирования гормона щитовидной железы, тяжелое поражение дыхательных путей, головная боль, похудение, нарушение потенции и либидо, развитие анемии, лейкопения, поражение почек, ухудшение зрения и слуха, на коже образуется хроническая экзема. Смертельная доза KCN для человека — 0.12 г, иногда переносятся большие дозы, замедление действия возможно при заполнении желудка пищей.

Информация о работе Методы и приборы для определения параметров микроклимата и чистоты воздуха