Автор работы: Пользователь скрыл имя, 15 Февраля 2011 в 19:11, контрольная работа
С ионизирующим излучением и его особенностями человечество познакомилось совсем недавно: в 1895 году немецкий физик В.К. Рентген обнаружил лучи высокой проникающей способности, возникающие при бомбардировке металлов энергетическими электронами (Нобелевская премия, 1901 г.), а в 1896 г. А.А. Беккерель обнаружил естественную радиоактивность солей урана.
Введение 3
1.Понятие ионизирующего излучения 4
2. Основные методы обнаружения ИИ 7
3. Дозы излучения и единицы измерения 8
4. Источники ионизирующего излучения 9
5. Средства защиты населения 11
6. Радиационный контроль 12
7. Рекомендации по защите от ионизирующих излучений 13
Заключение 16
Список используемой литературы 17
«ИНСТИТУТ УПРАВЛЕНИЯ»
(г. Архангельск)
Волгоградский
филиал
Кафедра
«_____________________________
Контрольная
работа
по
дисциплине: « безопасность
жизнедеятельности
»
тема:
«ионизирующее излучение
и защита от них»
Выполнил студент
гр. ФК – 3 – 2008
Зверков А. В.
(Ф.И.О.)
Проверил преподаватель:
_________________________
Волгоград
2010
Содержание
Введение
3
1.Понятие
ионизирующего излучения
2. Основные
методы обнаружения ИИ
3. Дозы
излучения и единицы измерения
4. Источники
ионизирующего излучения
5. Средства
защиты населения 11
6. Радиационный
контроль 12
7. Рекомендации
по защите от ионизирующих
излучений 13
Заключение
16
Список используемой литературы 17
Введение
С ионизирующим излучением и его особенностями человечество познакомилось совсем недавно: в 1895 году немецкий физик В.К. Рентген обнаружил лучи высокой проникающей способности, возникающие при бомбардировке металлов энергетическими электронами (Нобелевская премия, 1901 г.), а в 1896 г. А.А. Беккерель обнаружил естественную радиоактивность солей урана. Вскоре этим явлением заинтересовалась Мария Кюри, молодой химик, полька по происхождению, которая и ввела в обиход слова «радиоактивность». В 1898 году она и ее муж Пьер Кюри обнаружили, что уран после излучения превращается в другие химические элементы. Один из этих элементов супруги назвали полонием в память о родине Марии Кюри, а еще один – радием, поскольку по-латыни это слово обозначает «испускающий лучи». Хотя новизна знакомства состоит лишь в том, как люди пытались ионизирующее излучение использовать, а радиоактивность, и сопутствующие ей ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли.
Нет
необходимости говорить о том
положительном, что внесло в нашу
жизнь проникновение в
Появилось также число пострадавших от ионизирующей радиации, а сама она начала осознаваться как опасность, способная привести среду обитания человека в состояние, не пригодное для дальнейшего существования.
Причина не только в тех разрушениях, которые производит ионизирующее излучение. Хуже то, что оно не воспринимается нами: ни один из органов чувств человека не предупредит его о приближении или сближением с источником радиации. Человек может находиться в поле смертельно опасного для него излучения и не иметь об этом ни малейшего представления.
Такими опасными элементами, в которых соотношение числа протонов и нейтронов превышает 1…1,6. В настоящее время из всех элементов таблицы Д.И. Менделеева известно более 1500 изотопов. Из этого количества изотопов лишь около 300 стабильных и около 90 являются естественными радиоактивными элементами.
Продукты ядерного взрыва содержат более 100 нестабильных первичных изотопов. Большое количество радиоактивных изотопов содержится в продуктах деления ядерного горючего в ядерных реакторах АЭС.
Таким
образом, источниками ионизирующего
излучения являются искусственные
радиоактивные вещества, изготовленные
на их основе медицинские и научные
препараты, продукты ядерных взрывов
при применении ядерного оружия, отходы
атомных электростанций при авариях
на них.
1.Понятие ионизирующего излучения
Радиационная опасность для населения и всей окружающей среды связана с появлением ионизирующих излучений (ИИ), источником которых являются искусственные радиоактивные химические элементы (радионуклиды), которые образуются в ядерных реакторах или при ядерных взрывах (ЯВ). Радионуклиды могут попадать в окружающую среду в результате аварий на радиационно-опасных объектах (АЭС и др. объектах ядерного топливного цикла – ЯТЦ), усиливая радиационный фон земли.
Ионизирующими излучениями называют излучения, которые прямо или косвенно способны ионизировать среду (создавать раздельные электрические заряды). Все ионизирующие излучения по своей природе делятся на фотонные (квантовые) и корпускулярные. К фотонному (квантовому) ионизирующему излучению относятся гамма-излучение, возникающее при изменении энергетического состояния атомных ядер или аннигиляции частиц, тормозное излучение, возникающее при уменьшении кинетической энергии заряженных частиц, характеристическое излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома и рентгеновское излучение, состоящее из тормозного и/или характеристического излучений. К корпускулярному ионизирующему излучению относят α-излучение, электронное, протонное, нейтронное и мезонное излучения. Корпускулярное излучение, состоящее из потока заряженных частиц (α-, β-частиц, протонов, электронов), кинетическая энергия которых достаточна для ионизации атомов при столкновении, относится к классу непосредственно ионизирующего излучения. Нейтроны и другие элементарные частицы непосредственно не производят ионизацию, но в процессе взаимодействия со средой высвобождают заряженные частицы (электроны, протоны), способные ионизировать атомы и молекулы среды, через которую проходят. Соответственно, корпускулярное излучение, состоящее из потока незаряженных частиц, называют косвенно ионизирующим излучением.
Нейтронное и гамма излучение принято называть проникающеё радиацией или проникающим излучением.
Ионизирующие излучения по своему энергетическому составу делятся на моноэнергетические (монохроматические) и немоноэнергетические (немонохроматические). Моноэнергетическое (однородное) излучение – это излучение, состоящее из частиц одного вида с одинаковой кинетической энергией или из квантов одинаковой энергии. Немоноэнергетическое (неоднородное) излучение – это излучение, состоящее из частиц одного вида с разной кинетической энергией или из квантов различной энергии. Ионизирующее излучение, состоящее из частиц различного вида или частиц и квантов, называется смешанным излучением.
При авариях реакторов образуются a+,b± частицы и g-излучение. При ЯВ дополнительно образуются нейтроны -n°.
Рентгеновское и g-излучение обладают высокой проникающей и достаточно ионизирующей способностью (g в воздухе может распространяться до 100м и косвенно создать 2-3 пары ионов за счёт фотоэффекта на 1 см пути в воздухе). Они представляют собой основную опасность как источники внешнего облучения. Для ослабления g-излучения требуются значительные толщи материалов.
Бета- частицы (электроны b- и позитроны b+ ) краткобежны в воздухе (до 3,8м/МэВ), а в биоткани – до несколько миллиметров. Их ионизирующая способность в воздухе 100-300 пар ионов на 1 см пути. Эти частицы могут действовать на кожу дистанционно и контактным путём (при загрязнении одежды и тела), вызывая «лучевые ожоги». Опасны при попадании внутрь организма.
Альфа – частицы (ядра гелия) a+ краткобежны в воздухе (до 11 см), в биоткани до 0,1 мм. Они обладают большой ионизирующей способностью (до 65000 пар ионов на 1 см пути в воздухе) и особо опасны при попадании внутрь организма с воздухом и пищей. Облучение внутренних органов значительно опаснее наружного облучения.
Последствия облучения для людей могут быть самыми различными. Они во многом определяются величиной дозы облучения и временем её накопления. Возможные последствия облучения людей при длительном хроническом облучении, зависимость эффектов от дозы однократного облучения приведены в таблице.
Таблица 1. Последствия облучения людей.
Таблица 1. | ||
Радиационные эффекты облучения | ||
1 | 2 | 3 |
Телесные (соматические) | Вероятностные телесные (соматические - стохастические) | Гинетические |
1 | 2 | 3 |
Воздействуют
на облучаемого.
Имеют дозовый порог. |
Условно не имеют дозового порога. | Условно не имеют дозового порога. |
Острая лучевая болезнь | Сокращение продолжительности жизни. | Доминантные генные мутации. |
Хроническая лучевая болезнь. | Лейкозы (скрытый период 7-12 лет). | Рецессивные генные мутации. |
Локальные лучевые повреждения. | Опухоли разных органов (скрытый период до 25 лет и более). | Хромосомные абберации. |
2. Основные методы обнаружения ИИ
Чтобы
избежать ужасных последствий ИИ,
необходимо производить строгий
контроль служб радиационной безопасности
с применением приборов и различных
методик. Для принятия мер защиты
от воздействия ИИ их необходимо своевременно
обнаружить и количественно оценить.
Воздействуя на различные среды
ИИ вызывают в них определенные физико-химические
изменения, которые можно
К основным относятся: 1) ионизационный, в котором используется эффект ионизации газовой среды, вызываемой воздействием на неё ИИ, и как следствие – изменение ее электропроводности; 2) сцинтилляционный, заключающийся в том, что в некоторых веществах под воздействием ИИ образуются вспышки света, регистрируемые непосредственным наблюдением или с помощью фотоумножителей; 3) химический, в котором ИИ обнаруживаются с помощью химических реакций, изменения кислотности и проводимости, происходящих при облучении жидкостных химических систем; 4) фотографический, заключающийся в том, что при воздействии ИИ на фотопленку на ней в фотослое происходит выделение зерен серебра вдоль траектории частиц; 5) метод, основанный на проводимости кристаллов, т.е. когда под воздействием ИИ возникает ток в кристаллах, изготовленных из диэлектрических материалов и изменяется проводимость кристаллов из полупроводников и др.
3. Дозы излучения и единицы измерения
Действие
ионизирующих излучений представляет
собой сложный процесс. Эффект облучения
зависит от величины поглощенной
дозы, ее мощности, вида излучения, объема
облучения тканей и органов. Для
его количественной оценки введены
специальные единицы, которые делятся
на внесистемные и единицы в системе
СИ. Сейчас используются преимущественно
единицы системы СИ. Ниже в таблице
10 дан перечень единиц измерения
радиологических величин и
Таблица 2. Основные радиологические величины и единицы
Таблица 2 | |||
Величина | Наименование
и обозначение единицы |
Соотношение между единицами | |
Внесистемные | Си | ||
Активность нуклида, А | Кюри (Ки, Ci) | Беккерель (Бк, Bq) | 1 Ки = 3.7*1010Бк |
Экспозиционная доза, X | Рентген (Р, R) | Кулон/кг (Кл/кг, C/kg) | 1 Р = 2.58*10-4 Кл/кг |
Поглощенная доза, D | Рад (рад, rad) | Грей (Гр, Gy) | 1 рад = 10-2 Гр |
Эквивалентная доза, Н | Бэр (бэр, rem) | Зиверт (Зв, Sv) | 1 бэр=10-2 Зв |
Интегральная доза излучения | Рад-грамм (рад*г, rad*g) | Грей- кг (Гр*кг, Gy*kg) | 1 рад*г=10-5 Гр*кг |
Таблица 3. Зависимость эффектов от дозы однократного (кратковременного) облучения человека.
Таблица 3. | ||
Доза | Эффект | |
Грей | Рад | |
50 | 5000 | Пороговая доза поражения центральной нервной системы («электронная смерть») |
6,0 | 600 | Минимальная абсолютно-смертельная доза |
4,0 | 400 | Средне-смертельная доза (доза 50% выживания) |
1,5 | 150 | Доза возникновения первичной лучевой реакции (в зависимости от дозы облучения различают четыре степени острой лучевой болезни: 100-200 рад – 1ст., 200-400 рад – 2 ст., 400-600 рад – 3 ст., свыше 600 рад – 4ст.) |
1,0 | 100 | Порог клинических эффектов |
0,1 | 10 | Уровень удвоения генных мутаций |