Человеческий фактор в обеспечении производственной безопасности

Автор работы: Пользователь скрыл имя, 06 Января 2015 в 13:44, контрольная работа

Описание работы

Особое значение образование и воспитание в области безопасности приобретает в технических вузах, где достигнутый в процессе обучения уровень профессионализма будущих разработчиков новой техники и технологии, руководителей производства во многом будет определять эффективность решения проблем безопасности непосредственно в источниках их возникновения. Глубокое изучение проблем безопасности жизнедеятельности в технических вузах должно реализовываться на основе единого гармоничного и последовательного процесса, построенного с учетом непрерывности, междисциплинарности и охватывающего все формы обучения от лекций до дипломного проектирования.

Файлы: 1 файл

КонтрольнБЖД.doc

— 168.00 Кб (Скачать файл)

            При интенсивной интеллектуальной деятельности потребность мозга в энергии повышается, составляя 15 ... 20% от общего объема в организме. При этом потребление кислорода 100 г коры головного мозга оказывается в 5 раз больше, чем расходует скелетная мышца такого же веса при максимальной нагрузке. Суточный расход энергии при умственном труде составляет от 10,5 до 12,5 МДж. Так, при чтении вслух расход энергии повышается на 48 %, при выступлении с публичной лекцией - на 94 %, у операторов вычислительных машин – на 60-100%.

          При выполнении человеком умственной работы при нервно-эмоциональном напряжении имеют место сдвиги в вегетативных функциях человека: повышение кровяного давления, изменение ЭКГ, увеличение легочной вентиляции и потребление кислорода, повышение температуры тела. По окончании умственной работы утомление остается дольше, чем при физической работе.

          Тяжесть и напряженность труда. Тяжесть труда является количественной характеристикой физического труда. Напряженность труда - количественная характеристика умственного труда. Она определяется величиной информационной нагрузки.

         На производстве различают четыре уровня воздействия факторов условий труда на человека:

- комфортные условия труда обеспечивают  оптимальную динамику работоспособности человека и сохранение его здоровья;

- относительно дискомфортные условия труда при воздействии в течение определенного интервала времени обеспечивают заданную работоспособность и сохранение здоровья, но вызывают субъективные ощущения и функциональные изменения, не выходящие за пределы

нормы;

- экстремальные условия труда  приводят к снижению работоспособности человека, не вызывают функциональные изменения, выводящие за пределы нормы, но не ведущие к патологическим изменениям;

- сверхэкстремальные условия труда  приводят к возникновению в организме человека патологических изменений и к потере трудоспособности.

            Медико-физиологическая классификация тяжести и напряженности труда проводится на основании комплексной количественной оценки факторов условий труда, называемой интегральной величиной тяжести и напряженности труда .

            К 1 категории относят работы, выполняемые в оптимальных условиях труда при благоприятных нагрузках. 2 категория включает работы, выполняемые в условиях, соответствующих предельно допустимым значениям производственных факторов. К 3 категории относят работы, при которых вследствие не вполне благоприятных условий труда у

людей формируются реакции, характерные для пограничного состояния организма (ухудшение некоторых показателей психофизиологического состояния к концу работы). 4 категория включает работы, при которых неблагоприятные условия труда приводят к реакциям, характерным для предпатологического состояния у большинства людей. К 5 категории относят работы, при которых в результате воздействия весьма неблагоприятных условий труда у людей в конце рабочего периода формируются реакции, характерные для патологического функционального состояния организма. 6 категория включает работы, при которых подобные реакции формируются вскоре после начала трудового периода (смены, недели).

          1 и 2 категории тяжести и напряженности труда соответствуют комфортным производственным условиям, 3 - относительно дискомфортным, 4 и 5- экстремальным и 6 - сверхэкстремальным.

 

1.2 Физиологические характеристики  человека

 

        Общие характеристики анализаторов. Целесообразная и безопасная деятельность человека основывается на постоянном приеме и анализе информации о характеристиках внешней среды и внутренних системах организма. Этот процесс осуществляется с помощью анализаторов - подсистем центральной нервной системы (ЦНС), обеспечивающих прием и первичный анализ информационных сигналов. Информация, поступающая через анализаторы, называется сенсорной (от лат. Sensus -чувство, ощущение), а процесс ее приема и первичной переработки- сенсорным восприятием.

Внешние сигналы

Рецептор

Нервные связи

Головной мозг


 

Рис. 2. Функциональная схема анализатора

         В зависимости от специфики принимаемых сигналов различают следующие анализаторы:

Внешние - зрительный (рецептор - глаз); слуховой (рецептор - ухо); тактильный, болевой, температурный (рецепторы кожи); обонятельный (рецептор в носовой полости); вкусовой (рецепторы на поверхности языка и неба).

Внутренние - анализатор давления; кинестетический (рецепторы в мышцах и сухожилиях); вестибулярный (рецептор в полости уха); специальные, расположенные во внутренних органах и полостях тела.

         Рассмотрим  основные параметры анализаторов.

1. Абсолютная чувствительность  к интенсивности сигнала (абсолютный порог ощущения по интенсивности) - характеризуется минимальным значением воздействующего раздражителя, при котором возникает ощущение. В зависимости от вида раздражителя абсолютный порог измеряется в единицах энергии, давления, температуры, количества или концентрации вещества и т.п. Минимальную адекватно ощущаемую интенсивность сигнала принято называть нижним порогом чувствительности.

        Психофизическими опытами установлено, что величина ощущений изменяется медленнее, чем сила раздражителя.

2. Предельно допустимая интенсивность сигнала (обычно близка к болевому порогу). Максимальную адекватно ощущаемую величину сигнала принято называть верхним порогом чувствительности.

3. Диапазон чувствительности к интенсивности -включает все переходные значения раздражителя от абсолютного порога чувствительности до болевого порога.

4. Дифференциальная (различительная) чувствительность к изменению интенсивности сигнала - это минимальное изменение интенсивности сигнала, ощущаемое человеком.

5. Дифференциальная (различительная) чувствительность к изменению частоты сигнала - это минимальное изменение частоты F сигнала, ощущаемое человеком.

6. Границы (диапазон) спектральной чувствительности (абсолютные пороги ощущений по частоте, длине волны) определяются для анализаторов, чувствительных к изменению частотных характеристик сигнала (зрительного, слухового, вибрационного), отдельно нижний и верхний пороги.

7. Пространственные характеристики чувствительности специфичны для каждого анализатора.

8. Для каждого анализатора характерна минимальная длительность сигнала, необходимая для возникновения ощущений. Время, проходящее от начала воздействия раздражителя до появления ответного действия на сигнал (сенсомоторная реакция), называют латентным периодом.

9. Адаптация (привыкание) и сенсибилизация (повышение чувствительности) -характеризуются временем и присущи каждому типу анализаторов.

Функционирование разных анализаторов существенно изменяется под влиянием неблагоприятных для человека условий. Низке и высокие температуры, вибрации, перегрузки, невесомость, слишком интенсивные потоки информации, ведущие к дефициту времени, и ее

недостаток, утомление, вызванное длительной работой или неблагоприятными условиями, состояние стресса - все эти факторы вызывают различные изменения характеристик анализаторов.

         Характеристика зрительного анализатора. В процессе деятельности человек до 90 % всей информации получает через зрительный анализатор. Прием и анализ информации происходит в световом диапазоне (380-760 нм) электромагнитных волн. Цветовые ощущения вызываются действием световых волн, имеющих различную длину.

         Глаз различает семь основных цветов и более сотни их оттенков. Наибольшая чувствительность в условиях обычного дневного освещения (В= 9,56 кд/м2) достигается при длине волн 554 нм (в желто-зеленой части спектра) и убывает в обе стороны от этого значения.

        Абсолютная  слепящая яркость наступает при 225 000 кд/м2. Эффект ослепления может наступить и при меньших яркостях, если скорость нового объекта, попавшего в поле зрения, превысит яркость того объекта, на которую адаптирован глаз. Минимальная интенсивность светового воздействия, вызывающая ощущение света, называется порогом световой чувствительности.

        Временные характеристики восприятия сигналов:

- латентный период (скрытый период) - время от подачи сигнала до момента возникновения ощущения (0,15 ... 0,22 с);

- порог обнаружения сигнала при большей яркости - 0,001с, при длительности вспышки 0,1с. Яркость сигнала практического значения не имеет;

- привыкание к темноте (неполная  темновая адаптация) длится от нескольких секунд до нескольких минут;

- восприятие мелькающего света (критическая частота слияния мельканий) изменяется от 14 до 70 Гц в зависимости от яркости импульсов, их формы, угловых размеров объекта, уровня зрительной адаптации, функционального состояния человека и т.п. Для исключения слияния мельканий рекомендуется проецирование сигналов с частотой 3 ... 8 Гц.

         Восприятие пространства - формы, объема, величины и взаимного расположения объектов, их рельефа, удаленности и направления, в котором они находятся, достигается за счет бинокулярного зрения двумя глазами.

            Информация об удалении предметов достигается за счет конвергенции - сведений зрительных осей на объекте восприятия, благодаря чему возникают мышечные двигательные ощущения, которые и дают информацию.

           Характеристика слухового анализатора. С помощью звуковых сигналов человек получает до 10 % информации.

   Характерными особенностями слухового анализатора являются:

- способность быть готовым к приему информации в любой момент времени;

- способность воспринимать звуки в широком диапазоне частот и выделять необходимые;

- способность устанавливать со значительной точностью месторасположение источника звука.

          В связи с этим слуховое представление информации осуществляется в тех случаях, когда оказывается возможным использовать указанные свойства слухового анализатора. Наиболее часто слуховые сигналы применяются для сосредоточенного внимания человека -оператора (предупредительные сигналы и сигналы опасности), для передачи информации человеку-оператору, находящемуся в положении, не обеспечивающим ему достаточной для работы видимости объекта управления, приборной панели и т.п., а также для разгрузки зрительной системы.

           Для эффективного использования слуховой формы представления информации необходимо знание характеристик слухового анализатора. Свойства слухового анализатора оператора проявляются в восприятии звуковых сигналов. С физической точки зрения звуки представляют собой распространяющиеся механические колебательные движения в слышимом диапазоне частот.

         Основные параметры (характеристики) звуковых сигналов (колебаний):

- интенсивность (амплитуда),

- частота и форма, которые отражаются в таких звуковых ощущениях как громкость, высота и тембр.

Воздействие звуковых сигналов на звуковой анализатор определяется уровнем звукового давления (Па). Интенсивность (сила) звука (Вт/м2) определяется плотностью потока звуковой энергии (плотностью мощности).

          Характеристика кожного анализатора. Обеспечивает восприятие прикосновения (слабого давления), боли, тепла, холода и вибрации. Для каждого из этих ощущений (кроме вибрации) в коже имеются специфические рецепторы, либо их роль выполняют свободные нервные окончания. Каждый микроучасток кожи обладает наибольшей чувствительностью к тем раздражителям (сигналам), для которых на этом участке имеется наибольшая концентрация соответствующих рецепторов - болевых, температурных и тактильных. Так, плотность размещения составляет: на тыльной части кисти - 188 болевых, 14 осязательных, 7 холодовых и 0,5 тепловых на квадратный сантиметр поверхности; на грудной клетке соответственно - 196, 29,9 и 0,3. Воздействие в этих точках даже не специфическим, но достаточно сильным раздражителем независимо от его характера вызывает специфическое

ощущение, обусловленное типом рецептора. Например, интенсивный тепловой луч, попадая в точку боли, вызывает ощущение боли.

           Чувствительность к прикосновению. Это - ощущение, возникающее при действии на кожную поверхность различных механических стимулов (прикосновение, давление), вызывающих деформацию кожи. Ощущение возникает только в момент деформации. Абсолютный порог тактильной чувствительности определяется по тому минимальному давлению предмета на кожную поверхность, которое производит едва заметное ощущение прикосновения. Наиболее высоко развита чувствительность на дистальных частях тела. Примерные пороги ощущений: для кончиков пальцев руки - 3 г/мм2; на тыльной стороне пальца- 5 г/мм2 , на тыльной стороне кисти -12 г/мм2 ; на животе- 26 г/мм2 ; на пятке - 250 г/мм2 . Порог различения в среднем равен примерно 0,07 исходной величины давления.

         Вибрационная чувствительность. Вибрационная чувствительность обусловлена теми же рецепторами, что и тактильная, поэтому топография распределения вибрационной чувствительности по поверхности тела аналогична тактильной.

Информация о работе Человеческий фактор в обеспечении производственной безопасности