Безопасность при радиационно- и химически-опасных чрезвычайных ситуациях

Автор работы: Пользователь скрыл имя, 01 Декабря 2015 в 21:09, реферат

Описание работы

Для современного состояния России и других промышленно развитых стран мира характерно нарастание угроз в природно-техногенной сфере, а техногенные и природные катастрофы становятся постоянно действующими факторами не только экономики, но и политики. Крупнейшие аварии, катастрофы и стихийные бедствия, имевшие место в последние десятилетия в России и за рубежом, унесли сотни тысяч человеческих жизней, причинили большой и часто невосполнимый ущерб окружающей среде. Прямые экономические потери и затраты на ликвидацию их последствий достигают десятков и сотен миллиардов долларов.

Содержание работы

Введение …………………………………………………………….
3
1.
Радиационные чрезвычайные ситуации ……………………………
4
1.1
Классификация радиационных аварий …………………………….
5
1.2
Общая характеристика последствий радиационных аварий ……
6
1.3
Особенности радиационной защиты населения ………………….
13
2.
Чрезвычайные ситуации с выбросом аварийных химически-опасных веществ ……………………………………………………

16
2.1
Химические аварии …………………………………………………
19
2.2
Последствия аварий на химически-опасных объектах …………..
20
2.3
Особенности химической защиты населения ……………………..
22

Заключение …………………………………………………………
27

Информационные источники ………………………………

Файлы: 1 файл

БЖД - реферат.docx

— 57.50 Кб (Скачать файл)

уральский государственный экономический университет

 

факультет финансы и кредит

 

 

 

 

 

 

 

 

 

реферат

на тему:

«Безопасность при радиационно- и химически-опасных чрезвычайных ситуациях»

 

 

 

 

Работу выполнила:

Сибагатова Елена,

студентка I курса ФК-13-2

 

Проверил(а):

Сарсадских

Анастасия  Вадимовна

 

 

 

 

 

 

 

 

 

 


Екатеринбург - 2013

содержание

 

 

Введение …………………………………………………………….

3

1.

Радиационные чрезвычайные ситуации ……………………………

4

1.1

Классификация радиационных аварий …………………………….

5

1.2

Общая характеристика последствий радиационных аварий ……

6

1.3

Особенности радиационной защиты населения ………………….

13

2.

Чрезвычайные ситуации с выбросом аварийных химически-опасных веществ ……………………………………………………

 

16

2.1

Химические аварии …………………………………………………

19

2.2

Последствия аварий на   химически-опасных объектах …………..

20

2.3

Особенности химической защиты населения ……………………..

22

 

Заключение …………………………………………………………

27

 

Информационные источники …………………………………….

30


 

Введение

 

Для современного состояния России и других промышленно развитых стран мира характерно нарастание угроз в природно-техногенной сфере, а техногенные и природные катастрофы становятся постоянно действующими факторами не только экономики, но и политики. Крупнейшие аварии, катастрофы и стихийные бедствия, имевшие место в последние десятилетия в России и за рубежом, унесли сотни тысяч человеческих жизней, причинили большой и часто невосполнимый ущерб окружающей среде. Прямые экономические потери и затраты на ликвидацию их последствий достигают десятков и сотен миллиардов долларов.

В соответствии с федеральным законом «О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера» под чрезвычайной ситуацией природного и техногенного характера понимается обстановка на определенной территории, сложившаяся в результате аварии, опасного природного явления, катастрофы, стихийного или иного бедствия, которые могут повлечь или повлекли за собой человеческие жертвы, ущерб здоровью людей или окружающей природной среде, значительные материальные потери и нарушения условий жизнедеятельности людей.

В своем реферате хочу рассмотреть радиационные и химические аварии, которые относятся к техногенным бедствиям и являются источниками чрезвычайной ситуации,  а также особенности защиты населения при данных ЧС.

Источник чрезвычайной ситуации — опасное природное явление, авария или опасное техногенное происшествие, широко распространенная инфекционная болезнь людей, сельскохозяйственных животных и растений, а также применение современных средств поражения, в результате чего произошла или может возникнуть чрезвычайная ситуация.

 

  1. Радиационные чрезвычайные ситуации

 

За последние четыре десятилетия атомная энергетика и использование расщепляющих материалов прочно вошли в жизнь человечества. В настоящее время в мире работает более 450 ядерных реакторов. Атомная энергетика позволила существенно снизить “энергетический голод” и оздоровить экологию в ряде стран. Вместе с тем бурное развитие атомной промышленности и атомной энергетики, расширение сферы применения источников радиоактивности обусловили появление радиационной опасности и риска возникновения радиационных аварий с выбросом радиоактивных веществ и загрязнением окружающей среды. Радиационная опасность может возникать при авариях на радиационно-опасных объектах (РОО). РОО — объект, на котором хранят, перерабатывают, используют или транспортируют радиоактивные вещества и при аварии, на котором или его разрушении может произойти облучение ионизирующим излучением или радиоактивное загрязнение людей, сельскохозяйственных животных и растений, объектов народного хозяйства, а также окружающей природной среды.

В настоящее время в России функционирует более 700 крупных радиационно-опасных объектов, которые в той или иной степени представляют радиационную опасность, но объектами повышенной опасности являются атомные станции. Практически все действующие АЭС расположены в густонаселенной части страны, а в их 30-километровых зонах проживает около 4 млн. человек. Общая площадь радиационно-дестабилизированной территории России превышает 1 млн. км2, на ней проживает более 10 млн. человек.

Аварии на РОО могут привести к радиационной чрезвычайной ситуации (РЧС). Под радиационной чрезвычайной ситуацией понимается неожиданная опасная радиационная ситуация, которая привела или может привести к незапланированному облучению людей или радиоактивному загрязнению окружающей среды сверхустановленных гигиенических нормативов и требует экстренных действий по защите людей и среды обитания.

 

1.1 Классификация радиационных аварий

 

Аварии, связанные с нарушением нормальной эксплуатации РОО, подразделяются на проектные (авария, для которой проектом определены исходные события и конечные состояния, в связи с чем предусмотрены системы безопасности) и запроектные (вызывается не учитываемыми для проектных аварий исходными событиями и приводит к тяжелым последствиям. При этом может произойти выход радиоактивных продуктов в количествах, приводящих к радиоактивному загрязнению прилегающей территории, возможному облучению населения выше установленных норм. В тяжелых случаях могут произойти тепловые и ядерные взрывы).

В зависимости от границ зон распространения радиоактивных веществ и радиационных последствий потенциальные аварии на АЭС делятся на шесть типов: локальная, местная, территориальная, региональная, федеральная (свыше 500 человек, получивших дозу облучения выше уровней, установленных для нормальной эксплуатации, или количество людей, у которых могут быть нарушены условия жизнедеятельности, превысит 1 000 человек, или материальный ущерб превысит 5 млн. минимальных размеров оплаты труда), трансграничная (радиационные последствия аварии выходят за территорию Российской Федерации, либо данная авария произошла за рубежом и затрагивает территорию РФ).

За суммарный срок эксплуатации всех имеющихся в мире реакторов АЭС, равный 6000 лет, произошли лишь 3 крупные аварии: в Англии (Уиндекейл, 1957 г.), в США (Три-Майл-Айланд, 1979 г.) и в СССР (Чернобыль, 1986 г.). Авария на Чернобыльской АЭС была наиболее тяжелой. Эти аварии сопровождались человеческими жертвами, радиоактивным загрязнением больших площадей и огромным материальным ущербом. В результате аварии в Уиндекейле погибло 13 человек и оказалась загрязнена радиоактивными веществами территория площадью 500 км2. Прямой ущерб аварии в Три-Майл-Айланде составил сумму свыше 1 млрд. долл. При аварии на Чернобыльской АЭС погибло 30 человек, свыше 500 было госпитализировано и 115 тыс. человек эвакуировано.

Международным агентством по атомной энергетике (МАГАТЭ) разработана международная шкала событий на АЭС, включающая 7 уровней. По ней авария в США относится к 5 уровню (с риском для окружающей среды), в Великобритании — к 6 уровню (тяжелая), Чернобыльская авария — к 7 уровню (глобальная).

 

1.2 Общая характеристика последствий радиационных аварий

 

Долгосрочные последствия аварий и катастроф на объектах с ядерной технологией, которые носят экологический характер, оцениваются, главным образом, по величине радиационного ущерба, наносимого здоровью людей. Кроме того, важной количественной мерой этих последствий является степень ухудшения условий обитания и жизнедеятельности людей. Безусловно, уровень смертности и ухудшения здоровья людей имеет прямую связь с условиями обитания и жизнедеятельности, поэтому рассматриваются в комплексе с ними.

Последствия радиационных аварий обусловлены их поражающими факторами, к которым на объекте аварии относятся ионизирующее излучение как непосредственно при выбросе, так и при радиоактивном загрязнении территории объекта; ударная волна (при наличии взрыва при аварии); тепловое воздействие и воздействие продуктов сгорания (при наличии пожаров при аварии). Вне объекта аварии поражающим фактором является ионизирующее излучение вследствие радиоактивного загрязнения окружающей среды.

Любая крупная радиационная авария сопровождается двумя принципиально различающимися между собой видами возможных медицинских последствий: радиологическими последствиями, которые являются результатом непосредственного воздействия ионизирующего излучения; различными расстройствами здоровья (общими, или соматическими расстройствами), вызванными социальными, психологическими или стрессорными факторами, т. е. другими повреждающими факторами аварии нерадиационной природы.

Радиологические последствия (эффекты) различаются по времени их проявления: ранние (не более месяца после облучения) и отдаленные, возникающие по истечении длительного срока (годы) после радиационного воздействия.

Последствия облучения организма человека заключаются в разрыве молекулярных связей; изменении химической структуры соединений, входящих в состав организма; образовании химически активных радикалов, обладающих высокой токсичностью; нарушении структуры генетического аппарата клетки. В результате изменяется наследственный код и происходят мутагенные изменения, приводящие к возникновению и развитию злокачественных новообразований, наследственных заболеваний, врожденных пороков развития детей и появлению мутаций в последующих поколениях. Они могут быть соматическими (от греч. soma — тело), когда эффект облучения возникает у облученного, и наследственными, если он проявляется у потомства.

Наиболее чувствительны к радиационному воздействию кроветворные органы (костный мозг, селезенка, лимфатические узлы), эпителий слизистых оболочек (в частности, кишечника), щитовидная железа. В результате действия ионизирующих излучений возникают тяжелейшие заболевания: лучевая болезнь, злокачественные новообразования и лейкемии.

Радиоактивное загрязнение окружающей среды является наиболее важным экологическим последствием радиационных аварий с выбросами радионуклидов, основным фактором, оказывающим влияние на состояние здоровья и условия жизнедеятельности людей на территориях, подвергшихся радиоактивному загрязнению. Основными специфическими явлениями и факторами, обусловливающими экологические последствия при радиационных авариях и катастрофах, служат радиоактивные излучения из зоны аварии, а также из формирующегося при аварии и распространяющегося в приземном слое облака (облаков) загрязненного радионуклидами воздуха; радиоактивное загрязнение компонентов окружающей среды.

Воздушные массы, двигавшиеся 26 апреля 1986 г. на запад, 27 апреля на север и северо-запад, 28–29 апреля от северного направления повернули на восток, юго-восток и далее 30 апреля юг (на Киев).

Последующее длительное поступление радионуклидов в атмосферу происходило за счет горения графита в активной зоне реактора. Основной выброс радиоактивных продуктов продолжался в течение 10 суток. Однако истечение радиоактивных веществ из разрушенного реактора и формирование зон загрязнения продолжались в течение месяца. Долгосрочный характер воздействия радионуклидов определялся значительным периодом полураспада. Осаждение радиоактивного облака и формирование следа происходили длительное время. В течение этого времени изменялись метеорологические условия и след радиоактивного облака приобрел сложную конфигурацию. Фактически сформировались два радиоактивных следа: западный и северный. Наиболее тяжелые радионуклиды распространялись на запад, а основная масса более легких (йод и цезий), поднявшись выше 500–600 м (до 1,5 км), была перенесена на северо-запад.

В результате аварии около 5% радиоактивных продуктов, накопившихся за 3 года работы в реакторе, вышли за пределы промышленной площадки станции. Летучие изотопы цезия (134 и 137) распространились на огромные расстояния (значительное количество по всей Европе) и были обнаружены в большинстве стран и океанах Северного полушария. Чернобыльская авария привела к радиоактивному загрязнению территорий 17 стран Европы общей площадью 207,5 тыс. км2, с площадью загрязнения цезием выше 1 Кю/км2.

Если выпадения по всей Европе принять за 100%, то из них на территорию России пришлось 30%, Белоруссии — 23%, Украины — 19%, Финляндии — 5%, Швеции — 4,5%, Норвегии — 3,1%. На территориях России, Белоруссии и Украины в качестве нижней границы зон радиоактивного загрязнения был принят уровень загрязнения 1 Кю/км2.

Сразу после аварии наибольшую опасность для населения представляли радиоактивные изотопы йода. Максимальное содержание йода-131 в молоке и растительности наблюдалось с 28 апреля по 9 мая 1986 г. Однако в этот период “йодовой опасности” защитные мероприятия почти не проводились.

Информация о работе Безопасность при радиационно- и химически-опасных чрезвычайных ситуациях