Автор работы: Пользователь скрыл имя, 23 Августа 2014 в 00:12, реферат
Линзы, так или иначе, всегда используются в телескопе. Но в телескопах-рефракторах линзой является главная деталь телескопа – его объектив. Вспомним, что рефракция – это преломление. Линзовый объектив преломляет лучи света, и собирает их в точке, именуемой фокусом объектива. В этой точке строится изображение объекта изучения. Чтобы его рассмотреть используют вторую линзу – окуляр. Она размещается так, чтобы фокусы окуляра и объектива совпадали. Так как зрение у людей разное, то окуляр делают подвижным, чтобы было возможно добиться четкого изображения. Это называется настройкой резкости. Все телескопы обладают неприятными особенностями – аберрациями. Аберрации – это искажения, которые получаются при прохождении света через оптическую систему телескопа. Главные аберрации связаны с неидеальностью объектива.
Другой недостаток - сферическая аберрация. Только те лучи, которые параллельны главной оптической оси рефлектора, собираются в его главном фокусе в точку. Если же лучи не параллельны главной оптической оси, возникают сильные искажения изображений, гораздо более сильные, чем у рефрактора. Поэтому поле зрения, свободное от искажений, составляет всего несколько минут.
Так же поверхность зеркала надо серебрить или аллюминировать, а этот слой с течением времени тускнеет и его надо возобновлять. Поэтому в последнее время находят все большее применение комбинированные телескопы более сложных систем.
1.3. Зеркально-линзовые (катадиоптрические) телескопы
Третья группа телескопов, называемых катадиоптрическими (зеркально-линзовыми), представляет собой гибрид двух предыдущих систем — для того чтобы управлять ходом лучей в них используются и линзы, и зеркала. Примерами таких инструментов являются катадиоптрические телескопы Ньютона, телескопы Шмидт-Кассегрена и Максутова-Кассегрена.[8]
Катадиоптрический рефлектор Ньютона (рис.1.6) — это классический рефлектор, в который добавлена корректирующая линза,расположенная на пути световых лучей перед точкой фокуса.
Рис.1.6. Катодиоптрический рефлектор Ньютона.
Этот корректор увеличивает эффективное фокусное расстояние зеркала. Катадиоптрические рефлекторы более компактны и меньше подвержены колебаниям от ветра, чем простые Ньютоны, но имеют большее экранирование и могут быть более сложными в юстировке.
В телескопах Шмидт-Кассегрена (рис.1.7) световые лучи вначале проходят через тонкую асферическую пластину, подобранную таким образом, чтобы она исправляла сферическую аберрацию главного зеркала. Отразившись от главного, а затем и вторичного зеркала, лучи вновь отправляются в сторону главного зеркала и выходят из трубы через отверстие в нем. Прямо за этим отверстием устанавливается окуляр или диагональное зеркало.
Рис.1.7. Телескоп Максутова-Кассегрена
Фокусировка осуществляется перемещением окуляра или главного (вторичного) зеркала.
Телескопы Максутова-Кассегрена схожи с телескопами Шмидта-Кассегрена, только вместо корректирующей пластины Шмидта в них используется выпукло-вогнутая линза (мениск), обе поверхности которой имеют сферическую форму. Роль вторичного зеркала в этих телескопах играет небольшой центральный "пятачок", расположенный с внутренней стороны мениска и покрытый отражающим материалом. Проходя через мениск, свет попадает на главное зеркало, отражается от него, попадает на зеркальный "пятачок" на внутренней стороне мениска, вновь отражается и, так же как и в телескопах Шмидта-Кассегрена, выходит из трубы через отверстие в главном зеркале. Такая конструкция проще в изготовлении по сравнению с телескопами Шмидта-Кассегрена, но имеет больший вес за счет более тяжелого мениска.
1.4. Основные характеристики оптических телескопов
К основным характеристикам оптических телескопов можно отнести: светосила, угловое увеличение, оптическая мощь, разрешающая сила и так далее.
Светосила. Этот параметр характеризуется отношением диаметра объектива к его фокусному расстоянию . Эта величина называется относительным отверстием и записывается в виде дроби: 1:5, 1:7, 1:10, 1:15... В англоязычной литературе чаще используется обратная величина – относительное фокусное расстояние (f/D), которое также записывается в виде дроби: f/5, f/7, f/10, f/15... Чем больше относительное отверстие объектива телескопа (или наоборот: чем меньше отношение фокусного расстояния к диаметру объектива), тем выше его светосила.
Светосила телескопа, прежде всего, важна для определения его пригодности для фотографических целей — более светосильный инструмент позволит делать более короткие выдержки при фотографировании слабых астрономических объектов. Другим плюсом светосильных инструментов является большая компактность по сравнению с обычными инструментами (за счет более короткого фокуса), кроме того, они более приспособлены для наблюдений с малыми увеличениями (по той же причине). С другой стороны, светосильные инструменты сложнее в изготовлении и юстировке, и они в большей мере подвержены влиянию различных оптических аберраций.
Диапазон увеличений
Некоторые производители оптики в рекламе своей продукции указывают очень большие увеличения, с которыми якобы позволяют наблюдать предлагаемые ими телескопы (например, для скромного 60-мм рефрактора может быть приведено увеличение 500 крат и более). Разумеется, подобрав соответствующий короткофокусный окуляр, такое увеличение получить можно (и даже на телескопе с меньшей апертурой), но на практике это не имеет смысла: изображение в окуляре будет настолько тусклым и размытым, что в нем будет видно даже меньше деталей, чем при наблюдении с небольшими и средними увеличениями!
Есть простое правило, позволяющее оценить максимальное полезное увеличение телескопа: оно равно удвоенному значению диаметра объектива в миллиметрах (т.е. всего 120 крат для 60-мм инструмента). Дальнейший рост увеличения не даст выигрыша, т.к. новых деталей вы, скорее всего, не увидите, а общая яркость изображения значительно снизится. Однако следует помнить, что при особо благоприятных погодных условиях или для некоторых видов наблюдений (например, при разрешении тесных двойных звезд) можно с успехом использовать увеличения, превышающие "двойной предел", так что данное правило не является строгим. С другой стороны, неспокойствие атмосферы редко дает возможность проводить комфортные наблюдения с увеличением более 300 крат.
Нижний предел увеличения определяется диаметром выходного зрачка телескопа: он не должен превышать размер адаптировавшегося к темноте (т.е. полностью раскрывшегося) зрачка глаза наблюдателя, в противном случае часть собранного телескопом света не попадет в глаз и будет потеряна. Максимальный диаметр зрачка глаза наблюдателя обычно составляет 5-7 мм, поэтому с хорошим приближением можно считать, что минимальное полезное увеличение телескопа равно диаметру его объектива в миллиметрах, деленному на шесть (10 крат для 60-мм инструмента).
Разрешающая сила
Этот параметр характеризует способность телескопа различать мелкие детали у протяженных объектов (например, на дисках Луны и планет) и разделять близко расположенные точечные объекты — звезды. Разрешение напрямую зависит от диаметра объектива телескопа: если апертуру увеличить вдвое, то разрешающая сила также увеличится в два раза.
Второй фактор, влияющий на разрешение — это качество линз и зеркальных поверхностей. Ошибки изготовления оптики, неправильная сборка и юстировка, дефекты стекла, царапины, пыль и грязь на поверхности оптических элементов — все это становится источником ухудшения разрешающей силы телескопа.
При наблюдениях протяженных объектов, таких как Луна и планеты, вместе с увеличением телескопа растет видимый размер изображения. В отличие от них, точечные объекты (звезды) при больших увеличениях принимают вид дисков, окруженных несколькими концентрическими кольцами уменьшающейся яркости. Подобная картина, именуемая дифракционной, обусловлена волновой природой света. Диаметр центрального диска, называемого кружком Эри, обратно пропорционален апертуре телескопа.
Поскольку настоящее изображение звезды тонет в кружке Эри, на практике разделение тесной двойной звезды сводится к рассматриванию дифракционной картины системы в попытках различить диски Эри двух тесно расположенных звезд. Если принять, что оба компонента двойной системы имеют одинаковый блеск, то минимальное угловое расстояние (в секундах дуги), на котором эти звезды все еще можно будет разделить в данный телескоп, рассчитывается по формуле: 116"/D, где D — диаметр объектива телескопа в миллиметрах. Эта формула разрешающей силы называется пределом Дауэса, по фамилии английского астронома, получившего ее в XIX веке.
Проницающая способность телескопа характеризуется предельной звездной величиной слабейших звезд, которые можно увидеть в данный инструмент в условиях идеально темного неба. Предельную звездную величину (m) для телескопа, диаметр объектива которого равен D в миллиметрах, можно приблизительно оценить по следующей формуле: m = 2,5 + 5 lg D.
Просветление оптики позволяет повысить проницающую способность телескопа, тогда как пыль и грязь на оптике — понижает ее. Теоретические значения проницающей способности для телескопов разных диаметров приведены в сводной таблице.
Монтировка астрономического телескопа - важная часть конструкции, так как наблюдатель должен иметь возможность легко направлять телескоп в заданную точку неба и поддерживать его ориентацию при вращении Земли, отслеживая видимое движение объекта по небу. Небольшие любительские телескопы и современные управляемые компьютером телескопы используют альтазимутальную монтировку. До появления компьютерного управления наиболее распространенной была экваториальная монтировка. Экваториальную установку имеют многие из работающих в настоящее время телескопов, причем эта система остается популярной и для любительских инструментов
Экваториальная монтировка - способ установки телескопа, при котором инструмент может вращаться вокруг полярной оси, параллельной оси вращения Земли, и оси склонения, перпендикулярной полярной оси. Вращение вокруг этих двух осей обеспечивает независимое задание обеих экваториальных координат. Движение вокруг полярной оси изменяет прямое восхождение; движение вокруг другой оси - склонение.
Экваториальная монтировка имеет определенные преимущества: чтобы скомпенсировать видимое движение неба, вызываемое вращением Земли, достаточно поворачивать телескоп только вокруг одной из двух осей (полярной). Однажды наведенный на точку небесной сферы с нужным склонением, телескоп уже не требует дополнительной корректировки. Поэтому в течение многих лет все телескопы сколько-нибудь значительного размера проектировались исключительно с экваториальной монтировкой. Однако развитие компьютерного управления позволило осуществлять наведение и управление даже очень большими телескопами при более простой альтазимутальной монтировке. Тем не менее экваториальная монтировка остается популярной и до сих пор достаточно широко применяется на практике.
Чтобы обеспечить адекватную поддержку и свободу движения для телескопов различных размеров и типов, были разработаны различные виды экваториальной монтировки. К основным вариантам установки относятся немецкая, английская, рамочная, подковообразная и вилочная. Поскольку полярная ось должна быть параллельна земной оси (т.е. направлена в точку северного полюса мира), каждая конструкция экваториальной монтировки подходит только для той широты, для которой она была разработана
Кроме того, телескопы имеют различные дефекты, искажения.
Аберрации оптических систем бывают физические и геометрические. Физическая аберрация – хроматическая. Геометрические аберрации – сферическая, кома, астигматизм, кривизна поля и дисторсия.
Хроматическая аберрация создает радужный ореол вокруг звезды. Хроматическая аберрация характерна для всех преломляющих оптических приборов. Возникает из-за того, что коэффициент преломления среды зависит от длины волны света. Синие лучи отклоняются линзой сильнее красных, и поэтому положения фокусов для лучей разных длин волн не совпадают. В результате изображение звезды выглядит как набор радужных колец. Уже первые телескопы Галилея имели сильную хроматическую аберрацию. Первым, кто решил «избавиться» от хроматической аберрации, был Ньютон. Сначала он решил попробовать в телескопах две линзы, имеющие отрицательную и положительную оптическую силы, но не смог создать телескопа, свободного от хроматической аберрации. Именно поэтому Ньютон стал делать телескопы с вогнутыми зеркалами. Оптические системы, в которых хроматическая аберрация устранена в объективах, изготовленных из стекол с различными коэффициентами преломления, называются ахроматами. Хроматическая аберрация полностью отсутствует в зеркальных системах. Сферическая аберрация возникает из-за того, что лучи света, параллельные главной оптической оси объектива, падая на сферическую поверхность линзы или зеркала, после преломления или отражения пересекаются не в одной точке. Края объектива строят изображение ближе к объективу, а центральная часть – дальше. В результате изображение имеет в фокальной плоскости нерезкий вид. В рефракторах сферическая аберрация совместно с хроматической аберрацией устраняется подбором линз. В рефлекторах зеркалу придают не сферическую, а параболическую форму. Система, в которой сферическая аберрация исправлена, называется стигматичной.
Сферическая аберрация исправляется приданием зеркалу параболической формы.
Кома – внеосевая аберрация, связанная с наклоном лучей света, идущих от источника, к оптической оси телескопа. При этом изображение звезды имеет вид капли или кометы с ярким ядром и большим хвостом – отсюда и пошло название аберрации. Линейные размеры пятна комы пропорциональны расстоянию звезды от оптической оси и квадрату относительного отверстия объектива. Система, свободная как от сферической аберрации, так и от комы, называется апланатической.
Астигматизм проявляется в вытягивании круглых дифракционных колец в эллипсы, ориентация которых меняется на 90° при прохождении точки фокуса. Часто астигматизм возникает вследствие плохой юстировки телескопа, пережатого главного или вторичного зеркала, а также из-за отклонений формы вторичного зеркала от плоскости.
Дисторсия связана с искажением масштабов изображения. Изображение звезды собирается в одну точку, но эта точка не совпадает с изображением звезды в идеальном телескопе. Из-за этого изображение квадрата будет иметь вид либо подушки, либо бочки. Оптические системы, свободные от дисторсии, называются ортоскопическими.
Информация о работе Телескопы оптической системы и их характеристики