Автор работы: Пользователь скрыл имя, 02 Января 2015 в 22:22, реферат
Масса Солнца составляет 99,866 % от суммарной массы всей Солнечной системы. Солнечное излучение поддерживает жизнь на Земле (фотоны необходимы для начальных стадий процесса фотосинтеза), определяет климат. Солнце состоит из водорода (~73 % от массы и ~92 % от объёма), гелия (~25 % от массы и ~7 % от объёма) и других элементов с меньшей концентрацией: железа, никеля, кислорода, азота, кремния, серы, магния, углерода, неона, кальция и хрома.
1.Общее описание. 3
2.Жизненный цикл. 5
3.Структура солнца. 7
4.Атмосфера солнца. 10
5.Магнитное поле солнца. 14
6.Солнце как переменная звезда. 16
7.Теоретические проблемы солнца. 17
8.Литература и источники. 19
Корона.
Корона — последняя внешняя оболочка Солнца. Корона в основном состоит из протуберанцев и энергетических извержений, исходящих и извергающихся на несколько сотен тысяч и даже более миллиона километров в пространство, образуя солнечный ветер. Средняя корональная температура составляет от 1 000 000 до 2 000 000 К, а максимальная, в отдельных участках, — от 8 000 000 до 20 000 000 К. Несмотря на такую высокую температуру, она видна невооружённым глазом только во время полного солнечного затмения, так как плотность вещества в короне мала, а потому невелика и её яркость.
Форма короны меняется в зависимости от фазы цикла солнечной активности: в периоды максимальной активности она имеет округлую форму, а в минимуме — вытянута вдоль солнечного экватора.
Поскольку температура короны
очень велика, она интенсивно
излучает в ультрафиолетовом
и рентгеновском диапазонах. Эти
излучения не проходят сквозь
земную атмосферу, но в последнее
время появилась возможность
изучать их с помощью
Солнечный ветер.
Из внешней части солнечной короны истекает солнечный ветер — поток ионизированных частиц (в основном протонов, электронов и α-частиц), распространяющийся с постепенным уменьшением своей плотности, до границ гелиосферы. Солнечный ветер разделяют на два компонента — медленный солнечный ветер и быстрый солнечный ветер.
Медленный солнечный ветер вдвое более плотный и менее постоянный, чем быстрый. Медленный солнечный ветер имеет более сложную структуру с регионами турбулентности.
Многие природные явления на Земле связаны с возмущениями в солнечном ветре, в том числе геомагнитные бури и полярные сияния.
Первые свидетельства существования постоянного потока плазмы от Солнца получены Л. Бирманом (ФРГ) в 1950-х гг. по анализу сил, действующих на плазменные хвосты комет. В 1957 г. Ю. Паркер (США), анализируя условия равновесия вещества короны, показал, что корона не может находится в условиях гидростатик. равновесия, как это раньше предполагалось, а должна расширятся, и это расширение при имеющихся граничных условиях должно приводить к разгону коронального вещества до сверхзвуковых скоростей.
Впервые поток плазмы солнечного происхождения был зарегистрирован на второй советской космической ракете "Луна-2" в 1959 г. Существование постоянного истечения плазмы из Солнца было доказано в результате многомесячных измерений на амер. АМС "Маринер-2" в 1962 г.
Средние характеристики солнечн
Скорость |
400 км/с |
Концентрация протонов |
6 см -3 |
Температура протонов |
5*104 К |
Температура электронов |
1,5*105 К |
Напряжённость магнитного поля |
5*10-5 Э |
Плотность потока питонов .... |
2,4*108 см -2*c-1 |
Плотность потока кинетической энергии |
0,3 эрг*см -2*с -1 |
Относительный химический соста
Элемент |
Относительное содержание |
Н |
0,96 |
3 Не |
1,7*10-5 |
4 Не |
0,04 |
0 |
5*10-4 |
Ne |
7,5*10-5 |
Si |
7,5*10-5 |
Ar |
3,0*10-6 |
Fe |
4,7*10-5 |
5. Магнитное поле солнца.
Магнитное поля присутствуют, по-видимому, на всех звёздах. Впервые магнитное поле было обнаружено на ближайшей к нам звезде - Солнце - в 1908 г. амереканскмй астрономом Дж. Хейлом, измерившим зеемановское расщепление спектральных линий в солнечных пятнах.
Согласно современным измерениям, максимальная напряжённость магнитного поля пятен = 4000 Э. Поле в пятнах есть проявление общего азимутального магнитного поля Солнца, силовые линии которого имеют различное направление в Северном и Южном полушариях Солнца
В отличие от ближайшего космического пространства, непосредственное измерение магнитных полей на Солнце магнитометрами невозможно не только из-за технических трудностей посылки космического зонда к Солнцу, но также из-за высокой температуры его вещества, которую не может выдержать ни один прибор). Поэтому как на Солнце, так тем более и на других более удаленных объектах, магнитные поля можно измерять лишь косвенно — анализируя электромагнитное излучение.
На Солнце магнитное поле захватывается горячим веществом или "вмораживается" в него. При своем движении солнечное вещество увлекает за собой столько магнитного поля, сколько сможет. Так как скорость вращения на экваторе опережает скорость вращения на полюсах, силовые линий магнитного поля растягиваются, но линии поля при таком наматывании не обрываются; они скорее похожи на чрезвычайно эластичную резину. Как и у резины, чем больше они растягиваются, тем больше в них запас энергии.
Магнитное поле пятен подавляет конвекцию в верхних слоях конвективной зоны, перенос энергии здесь резко уменьшается, поэтому температура газа в области пятна уменьшается на 1 500—2 000 К. В близких же окрестностях пятна, где напряженность поля относительно невелика, магнитное поле, наоборот, усиливает конвективный перенос энергии. Именно так и возникают яркие образования — факелы.
Оценки показывают, что плавучесть эффективна до глубин порядка 15 000 км, тогда как толщина конвективной зоны примерно в семь раз больше. Отсюда следует, что магнитные поля пятен формируются в верхней части конвективной зоны Солнца.
В связи с этим возникает следующий вопрос: каким же образом поддерживается неоднородное вращение Солнца? Ведь усиление магнитных полей и образование магнитных трубок происходит за счет торможения вращательного движения экваториальных областей, и если бы эта энергия не поступала непрерывно, то уже после нескольких оборотов Солнце начало бы вращаться как абсолютно твердое тело, т. е. угловая скорость вращения у полюсов и на экваторе была бы одинаковой.
6. Солнце как переменная звезда.
Переменными звездами называются такие светила, светимость которой изменяется со временем в результате происходящих в её районе физических процессов.
Оказывается, наше Солнце - такая звезда.
Собранная информация датчиком частиц солнечного ветра Swoops зонда Ulysses, позволила сделать вывод о непрерывном – начиная с середины 1990-х годов – "ослабевании" солнечного ветра. Более того – процесс этот начался, по всей видимости, гораздо раньше. В настоящее время скорость солнечного ветра достигла абсолютного минимума по крайней мере за полвека – с тех пор, как начались непосредственные его исследования с использованием космических аппаратов. Снижение скорости солнечного ветра за десятилетие относительно невелико – около 3%, однако оно является следствием снижения температуры и давления частиц солнечного ветра на 13% и 20% соответственно. Насколько длителен процесс и насколько далеко он зашел, сказать пока невозможно. Охлаждение солнечного ветра сопровождается также снижением напряженности магнитного поля Солнца на треть за тот же период.
Тем самым обострилась радиационная обстановка в Солнечной системе и в околоземном пространстве – плотность потока особо опасных протонов высоких энергий, приходящих из глубокого космоса, возросла примерно на 20%. </p>.
Аномальное снижение активности солнечного ветра дополняет картину трудно объяснимых аномалий в поведении самого светила. Уникальная активность светила в конце прошлого цикла сменилась ненормально длительным отсутствием пятен – показателя активности – на светиле.
Снижение числа пятен, вообще говоря, характерно для минимумов солнечной активности, однако на этот раз процесс слишком затянулся. Уже почти год на Солнце пятен практически не наблюдается вообще.
Очевидно, что масштаб происходящих на Солнце в настоящее время процессов выходит за рамки гипотезы их 11-летней цикличности.
7. Теоретические проблемы солнца.
Проблема солнечных нейтрино.
Ядерные реакции, происходящие в ядре Солнца, приводят к образованию большого количества электронных нейтрино. При этом измерения потока нейтрино на Земле, которые постоянно производятся с конца 1960-х годов, показали, что количество регистрируемых солнечных электронных нейтрино приблизительно в два-три раза меньше, чем предсказывает стандартная солнечная модель, описывающая процессы в Солнце. Это рассогласование между экспериментом и теорией получило название «проблема солнечных нейтрино» и более 30 лет было одной из загадок солнечной физики. Положение осложняется тем, что нейтрино крайне слабо взаимодействует с веществом, и создание нейтринного детектора, который способен достаточно точно измерить поток нейтрино даже такой мощности, как исходящий от Солнца — технически сложная и дорогостоящая задача.
Предлагалось два главных пути решения проблемы солнечных нейтрино. Во-первых, можно было модифицировать модель Солнца таким образом, чтобы уменьшить предполагаемую температуру в его ядре и, следовательно, поток излучаемых Солнцем нейтрино. Во-вторых, можно было предположить, что часть электронных нейтрино, излучаемых ядром Солнца, при движении к Земле превращается в нерегистрируемые обычными детекторами нейтрино других поколений (мюонные и тау-нейтрино). Сегодня понятно, что правильным, скорее всего, является второй путь.
Для того, чтобы имел место переход одного сорта нейтрино в другой — то есть происходили так называемые нейтринные осцилляции — нейтрино должно иметь отличную от нуля массу. В настоящее время установлено, что это действительно так. В 2001 году в нейтринной обсерватории в Садбери (Sudbury Neutrino Observatory) были непосредственно зарегистрированы солнечные нейтрино всех трёх сортов и было показано, что их полный поток согласуется со стандартной солнечной моделью. При этом только около трети долетающих до Земли нейтрино оказывается электронными. Это количество согласуется с теорией, которая предсказывает переход электронных нейтрино в нейтрино другого поколения как в вакууме (собственно «нейтринные осцилляции»), так и в солнечном веществе («эффект Михеева — Смирнова — Вольфенштейна»). Таким образом, в настоящее время проблема солнечных нейтрино, по-видимому, решена.
Проблема нагрева короны
Над видимой поверхностью Солнца (фотосферой), имеющей температуру около 6000 K, находится солнечная корона с температурой более 1 000 000 K. Можно показать, что прямого потока тепла из фотосферы недостаточно для того, чтобы привести к такой высокой температуре короны.
Предполагается, что энергия для нагрева короны поставляется турбулентными движениями под фотосферной конвективной зоны. При этом для переноса энергии в корону предложено два механизма. Во-первых, это волновое нагревание — звук и магнитогидродинамические волны, генерируемые в турбулентной конвективной зоне, распространяются в корону и там рассеиваются, при этом их энергия переходит в тепловую энергию корональной плазмы. Альтернативный механизм — магнитное нагревание, при котором магнитная энергия, непрерывно генерируемая фотосферными движениями, высвобождается путём присоединения магнитного поля в форме больших солнечных вспышек, или же большого количества мелких вспышек.
В настоящий момент неясно, какой тип волн обеспечивает эффективный механизм нагрева короны. Можно показать, что все волны, кроме магнитогидродинамических альфвеновских, рассеиваются или отражаются до того, как достигнут короны, диссипация же альфвеновских волн в короне затруднена. Поэтому современные исследователи сконцентрировали основное внимание на механизм нагревания с помощью солнечных вспышек. Один из возможных кандидатов в источники нагрева короны — непрерывно происходящие мелкомасштабные вспышки, хотя окончательная ясность в этом вопросе ещё не достигнута.
Литература и источники: