Практическая астрономия

Автор работы: Пользователь скрыл имя, 16 Октября 2009 в 04:35, Не определен

Описание работы

Геодезическая астрономия

Файлы: 1 файл

Практическая астрономия.doc

— 161.00 Кб (Скачать файл)

Практическая астрономия,

раздел астрометрии, посвященный учению об астрономических инструментах и способах определения из астрономических наблюдений времени, географических координат и азимутов направлений. В зависимости от условий, в которых решаются задачи П. а., она подразделяется на геодезическую астрономию, мореходную астрономию и авиационную астрономию. Способы П. а. основываются на правилах сферической астрономии и использовании звёздных каталогов, составлением которых занимается фундаментальная астрометрия.

П. а. возникла в глубокой древности под влиянием задач  хозяйственной жизни человеческого  общества.

Применяемые в П. а. инструменты позволяют измерять углы в горизонтальной и вертикальной плоскостях и фиксировать моменты прохождения светил через вертикалы и альмукантараты. Среди этих инструментов: универсальный инструмент, зенит-телескоп, вертикальный круг, переносной пассажный инструмент, зенитная фотографическая труба, мореходный и авиационный секстанты и др. (см. Астрономические инструменты и приборы). Для измерения времени служат кварцевые часы и морские хронометры. При определении долгот используется аппаратура для приёма радиосигналов времени.

В П. а. применяются  следующие способы определения местного времени s (что равносильно определению поправки часов u), широты j долготы l и азимута А направления на земной предмет. (Ниже использованы обозначения: а — азимут, z — зенитное расстояние, a прямое восхождение, d — склонение, t— часовой угол небесного светила, s — местное время, Т — показания часов в момент наблюдений.)

1) Определение u и j по измерениям z светила s. Из параллактического треугольника PZs(Р — полюс мира, Z — зенит, s место светила; рис. 1) следует, что

cosz = sinj sind + cosj cosdcost, (1)

где

t = Т + u — a. (2)

Найдя в астрономическом  каталоге a и d наблюдаемого светила  и измерив его зенитное расстояние z в момент Т, из уравнений (1) и (2) можно вычислить поправку часов u, если известна j, или вычислить j, если известна u. Если неизвестны u и j, то решение уравнений (1) и (2) ведут способом последовательных приближений или наблюдают две звезды: одну вблизи меридиана, другую — вблизи первого вертикала. Полученные две системы уравнений (1) и (2) решают совместно. Для моментов кульминаций справедливы уравнения:

j = ds + Zs и j = dNZN (3)

(индексы S и N обозначают светила, кульминирующие, соответственно, к югу и северу от зенита). Т. к. измерить z строго в меридиане нельзя, то измеряют его вблизи меридиана, вводя при вычислениях необходимую поправку.

2) Определение u и j по наблюдениям пар звёзд на равных зенитных расстояниях z. В 1874 русский геодезист Н. Я. Цингер предложил способ определения u по наблюдениям моментов прохождения двух звёзд через один и тот же альмукантарат (см. Цингера способ). Звёзды наблюдаются вблизи первого вертикала: одна — на востоке, другая на западе, симметрично относительно меридиана. Аналогичный способ для определения j по наблюдениям пары звёзд на равных зенитных расстояниях вблизи меридиана предложил в 1887 русский путешественник М. В. Певцов (см. Певцова способ). Оба способа характеризуются простотой наблюдений и высокой точностью получаемых результатов.

3) Совместное определение  u и j. Советские учёные В. В. Каврайский (1924—36) и А. В. Мазаев (1943—45) предложили способы совместного определения u и j (см. Каврайского способ и Мазаева способ). По способу Каврайского наблюдаются четыре звезды на попарно равных зенитных расстояниях z; по способу Мазаева — серия звёзд в альмукантарате с z = 45° или z = 30°.

4) Определение j по  способу Талькотта. Этот способ, предложенный в 1857 американским  геодезистом А. Талькоттом, основан  на измерении малой разности  зенитных расстояний двух звёзд,  кульминирующих по разные стороны от зенита (см. Талькотта способ). Полусумма правых и левых частей равенств (3) даёт:

. (4)

Звёзды выбираются так, чтобы разность их зенитных расстояний была в пределах диаметра рабочей  части поля зрения трубы, т. е. не превышала 10—15’, а разность прямых восхождений  отличалась бы на 5—20 мин (при наблюдениях обеих звёзд в верхней кульминации). Для наблюдений труба зенит-телескопа или универсального инструмента устанавливается на среднее зенитное расстояние пары в азимуте 0° для наблюдения звезды, кульминирующей к югу от зенита, и 180° — к северу от него. Величина Zs — ZN измеряется окулярным микрометром. Способ нашёл широкое применение, в частности на международных станциях, изучающих движение земных полюсов.

5) Определение u и j из наблюдений на зенитной фотографической трубе. В некоторых обсерваториях для служб времени и служб широты определяют u и j из совместных наблюдений на фотографических зенитных трубах. Изображение звезды фиксируется на движущейся с её скоростью фотографической пластинке с маркировкой на ней моментов времени. Звёзды наблюдают в узкой зенитной зоне, ограниченной рабочей частью поля зрения трубы. Ось инструмента постоянно направлена в зенит, что контролируется ртутным горизонтом.

6) Определение u пассажным инструментом. Этот способ широко применяется в практике служб времени и при высокоточных определениях долгот. Наблюдаются моменты прохождений серии звёзд через меридиан с регистрацией их или контактным микрометром, или с помощью фотоумножителей. Поправки определяются по формуле

u = a — Т. (5)

Подобный способ применительно  к универсальному инструменту предложил  русский геодезист Н. Д. Павлов (1912). В некоторых случаях определение  u производится по наблюдению прохождений звёзд в вертикале Полярной (способ Деллена).

7) Определение l. Восточная  долгота места наблюдения связана  со всемирным временем S и местным s соотношением:

l = s — S = Т + u — S; (6)

u — определяется одним из изложенных выше способов, а S — путём приёма радиосигналов времени, транслируемых в течение суток многими радиостанциями.

8) Определение А. Наиболее распространённый способ основан на измерении универсальным инструментом горизонтального угла между направлениями на Полярную Мs (рис. 2) и земной предмет М и вычислении азимута Полярной в момент наблюдения s. Для этого служит соотношение:

tga

, (7)

где t = s — a. Азимут А предмета находится из уравнения

А = а + М — Мs. (8)

В геодезической практике часто применяется способ определения  азимута, основанный на наблюдениях  моментов прохождения звёзд с большими z (50°—70°) вблизи меридиана.

9) Определение j и  l способом высотных линий положений,  предложенным американским моряком  Т. Сомнером в 1843 (см. Сомнера способ). В мореходной и авиационной астрономии, где требуется меньшая точность, но большая быстрота в определении j и l, широко применяется способ высотных линий положения, сущность которого ясна из рис. 3. Находясь в точке m, географические координаты которой необходимо определить, измеряют зенитное расстояние z1 небесного светила s1 (с координатами a1 и d1) и вычисляют географические координаты проекции å1, светила на поверхность Земли — т. н. географические места светила — по формулам j1 = d; l1 = a1 S (долгота восточная). Окружность радиуса z1 с центром в å1 проходит на глобусе через точку m. Измерив z2 другого светила, проводят другую окружность радиусом z2 с центром в å2; в одной из двух точек пересечения этих окружностей расположена искомая точка m (выбор нужной точки не представляет затруднений, т.к. приближённое. место наблюдения бывает известно). На практике пользуются не глобусом, а картой, прочерчивая на ней отрезки кривых, отождествляемые с дугами окружности вблизи их пересечений. Эти отрезки называют высотными линиями положений или линиями Сомнера (см. Позиционная линия).

Все проблемы П. а. имеют  большое значение для астрономии, геодезии, геофизики. Определения j, l и  А необходимы для ориентирования триангуляционных сетей, служащих опорой для картографических работ и для изучения фигуры Земли. Изучение изменяемости jпривело к установлению периодических и вековых движений земных полюсов. Переопределение долгот обсерваторий в разные эпохи доставляет необходимые данные для изучения дрейфа континентов.

Лит.: Блажко С. Н., Курс практической астрономии, 3 изд., М. — Л., 1951; Белобров А. П., Мореходная астрономия, Л., 1954; Воробьев Л. М., Астрономическая навигация летательных аппаратов, М., 1968.

В. П. Щеглов. 
 
 

Что такое "координированное время"?

Вероятно, многим приходилось  слышать слова "всемирное время", "эфемеридное время", "атомное  время". Недавно появилось понятие "координированного", или, как  иногда говорят, "согласованного" времени. Для чего нужно столько разных времен? Разные названия времени означают лишь различные методы его определения. Само время течет независимо от способов его измерения, подобно тому как расстояние между Москвой и Ленинградом остается неизменным, хотя, выражая его в километрах или милях, мы получаем разные величины.

Время регулирует повседневную жизнь человека. Но оно еще и  отражает динамические свойства материи: изучение любых движений или изменений  в окружающем нас мире немыслимо  без непрерывной, равномерной и достаточно точной шкалы времени. В соответствии с этим перед наукой и практикой возникают следующие задачи: во-первых, выбрать удобные и точные единицы счета времени, основанные на каком-либо стабильном периодическом природном процессе, и установить систему отсчета времени, или, как говорят иначе, шкалу времени; во-вторых, создать счетчики равномерного времени и аппаратуру для их сличения; в-третьих, научиться сопоставлять показания этих счетчиков с тем природным процессом, который лежит в основе той или иной шкалы времени. В статье мы рассмотрим только первую из перечисленных проблем.

ТРИ ШКАЛЫ  ВРЕМЕНИ.

В астрономии исторически  сложились три шкалы для измерения  времени. Вращением Земли вокруг оси задается шкала всемирного времени. Вращение Земли и смена дня и ночи определяют самую естественную единицу времени - сутки. Сутки - это промежуток времени между последовательными верхними кульминациями на данном меридиане одной из трех фиксированных точек небесной сферы: точки весеннего равноденствия, центра видимого диска Солнца (истинного Солнца) либо фиктивной точки, равномерно движущейся по экватору и называемой "средним солнцем". В соответствии с этим сутки бывают звездные, истинные солнечные или средние солнечные. Начальным меридианом при всех измерениях времени с 1884 года считается меридиан Гринвичской обсерватории, а среднее солнечное время на меридиане Гринвича называется всемирным временем UT (Universal Time). Земной шар поделен на 24 часовых пояса шириной 15°, и каждому поясу приписано время, отличающееся на целое число часов от всемирного. Всемирное время определяется из астрономических наблюдений, которые ведутся специальными службами на многих обсерваториях мира. Но службы времени расположены на Земле, и, следовательно, результаты их наблюдений зависят от состояния и свойств вещества земных недр, от тектонических движений, приливов, циркуляции атмосферных масс. Иными словами, продолжительность суток изменяется в зависимости от геофизических явлений, происходящих внутри, на поверхности и в атмосфере Земли. Часть этих процессов приводит к непредвиденным изменениям в положении оси вращения Земли, другие - порождают неравномерности в ее суточном вращении. Если меняется положение оси вращения Земли, то меняется и положение земных полюсов, а значит, координаты точек земной поверхности. Очевидно, что эти изменения вносят "ошибку" в определяемое из астрономических наблюдений время. Сезонные перемещения воздушных масс в атмосфере Земли повторяются из года в год более или менее регулярно. Они вызывают годовые вариации угловой скорости вращения Земли: замедление вращения весной и ускорение - в конце лета. Тормозящее действие лунных и солнечных приливов приводит к вековому замедленного вращения Земли. Нерегулярные, или случайные, флуктуации скорости вращения пока не получили четкой физической интерпретации.

В зависимости от того, какие процессы, влияющие на шкалу  всемирного времени, учитываются при  ее построении, различаются три системы  всемирного времени:

  • UTO - всемирное время, полученное непосредственно из астрономических наблюдений. Оно не универсально, поскольку зависит от положения обсерватории на поверхности Земли;
  • UT1 - всемирное время, в которое внесены поправки, связанные с изменением долгот обсерваторий вследствие движения полюсов;
  • UT2 - всемирное время, в котором учтены также сезонные вариации в скорости вращения Земли. Они вычисляются на основании исследований, выполненных в предыдущие годы. Поэтому время UT2 называют предварительным равномерным или квазиравномерным. UT2 - наиболее возможное приближение к равномерной шкале времени, которое можно получить из наблюдений суточного движения звезд.

Данных какой-нибудь одной службы времени еще недостаточно для определения шкалы всемирного времени, поскольку эти данные сильно искажены ошибками самих астрономических наблюдений. Нужно срочно сравнить материалы служб времени, привести их к единой системе и осреднить. В нашей стране эта работа возложена на Всесоюзный научно-исследовательский институт физико-технических и радиотехнических измерений Комитета стандартов при Совете Министров. Шкала всемирного времени Государственной службы времени и частоты создается на основе результатов наблюдений 21 службы времени (в том числе девяти служб времени социалистических стран).

Наша страна участвует  и в работе Международного бюро времени, образованного в 1920 году в Париже. В начале своей деятельности бюро использовало результаты наблюдений всего восьми служб времени, а в 1976 году шкала UT1 была определена по материалам наблюдений на 82 астрономических инструментах более 50 служб времени. Шкала всемирного времени СССР практически совпадает со шкалой UT1 Международного бюро времени.

Шкалу времени UT2 можно  считать достаточно равномерной  на протяжении года или нескольких лет. Но через несколько десятилетий  ее равномерность будет нарушена вследствие медленных вековых и нерегулярных изменений в скорости вращения Земли. Поэтому шкала всемирного времени непригодна для построения теорий движения планет и их спутников. В уравнения движения небесных тел как независимый аргумент входит эфемеридное время ЕТ (Ephemeris Time). Это-равномерно текущее время ньютоновой механики. Шкала эфемеридного времени задается орбитальным движением тел Солнечной системы. Основная единица измерения эфемеридного времени-тропический год в фундаментальную эпоху 1900, январь 0, 12 ч, то есть промежуток времени между последовательными прохождениями центра истинного Солнца через среднюю точку весеннего равноденствия в эпоху 1900, январь 0, 12 ч. Эфемеридная секунда равна Vsi 556 925, 9477 части тропического года для начальной эпохи. Эфемеридные сутки содержат 86 400 эфемеридных секунд.

Информация о работе Практическая астрономия