Автор работы: Пользователь скрыл имя, 25 Ноября 2009 в 21:04, Не определен
Гелиоцентрическая система мира
Природа представляет собой единое целое, связанное единой идеей. Отдельные науки изучают различные проявления этого единого целого, а основная идея содержит се законы природы в виде стройной системы правил. Но система правил или законы природы едины не только для природы Земли, но и для всей Вселенной. Следовательно, - Вселенная представляет единое целое.
Единая
идея конструкции Вселенной
В своем развитии человечество приобретало знания исходя из опыта, наблюдения природных явлений , попыток осмыслить и использовать понятые явления. Приобретенные знания человечество использовало для удовлетворения своих потребностей, производства изделий и услуг. Но наряду с этим развивалось мышление человека, а вместе с мышлением развивались науки.
«Физика» в переводе с греческого означает «природа». Со времен Аристотеля(IVв. До н.э.) физикой называют науку о природе. Развитие физики условно подразделяют на три этапа.
Первый этап – древний и средневековый – охватывает период со времен Аристотеля до начала XVII в. Второй этап – классической физики – связывают с основанием точного естествознания Галилео Галилеем и основателем классической физики Исааком Ньютоном. Третий этап охватывает XXв.
С
1917 по 1991 гг. в России господствовала
марксистско-ленинская
Исследуем тот вопрос подробнее. Как мы помним, наука – это сфера человеческой деятельности, добывающая достоверные знания. К первому периоду человечество обладало большим объемом знаний. Оно научилось добывать и использовать огонь для приготовления пищи, обогрева, литейного производства. Литейное производство основано на знаниях о металлах, способах получения металлических изделий: утвари, украшений, оружия, строительных элементов.
Строительство египетских пирамид относят к 3-2му тысячелетиям до н. э. Их изучение проводят до сих пор, и не все тайны пирамид открыты. Тайны, которые появились 5 тыс. лет тому назад. Точно установлено, что этот строительство произведено с использованием знаний астрономии.
До Аристотеля люди уже могли находить путь кораблям, движущимся вне видимости земли, по звездам. По звездам же ориентировались караваны в пустыне. Сила ветра использовалась для движения кораблей. Первые ирригационные сооружения появились задолго до Аристотеля в древнем Египте.
Возможно, человечество обладало и многими другими знаниями, но отсутствие систем хранения, переработки и передачи информации привело к потере добытых знаний.
Итак, до Аристотеля человечество обладало большим объемом информации, проверенной и используемой на практике, которую нельзя назвать ненаучной. Следовательно, и до Аристотеля должны были существовать науки.
А что же было особенного в Ivи. До н. э.?
Оказывается, Аристотель, ученик Платона, впервые рассмотрел атомы как первичные элементы материи. А создав свою теорию строения материи, выступил с резкой критикой своего учителя. Платон учил, что за всеми вещами стоят некие «идеи», создавшие эти вещи. Аристотель же считал, что сущность вещей заключается в самих вещах и нет никаких «идей» вне вещей.
Платона назвали идеалистом, а Аристотеля материалистом.
Но естествознание развивалось независимо от того, кого из ученых называли материалистом, а кого идеалистом.
Во II в. н.э. Птолемей создал геоцентрическую систему. Земля – в центре, Солнце вращается вокруг Земли, двенадцать знаков зодиака – это двенадцать созвездий, по каждому из которых Солнце проходит ежемесячно. Эта теория просуществовала 1200 лет.
А в течение этих 1200 лет развивалась алхимия. Алхимия считалась донаучным направлением в химии. Цель алхимии – найти «философский камень», чтобы превращать металлы в золото, получить эликсир долголетия, найти универсальный растворитель. Как видим, цели алхимии практически те же, что и у современной науки.
В результате: открыты и получены минеральные растворители и красители, стекла, эмали, лекарственные препараты, разработаны технологии дистилляции, применяемые в химической, нефтеперерабатывающей и фармацевтической промышленности.
Через 1200 лет после Птолемея мы попадаем во времена Коперника, создавшего гелиоцентрическую систему (о ней будем говорить ниже). Земля вращается вокруг Солнца и вокруг своей оси, так же, как и другие планеты. Заметим, что все знания, добытые Птолемеем, сохранились и используются на практике до сих пор.
Еще через двести лет мы попадаем во времена Галилео Галилея и Исаака Ньютона. Галилео Галилей, основатель точного естествознания, заложил основу современной химии, выдвинул идею относительности движения, установил законы инерции, свободного падения, движения тел по плоскости, построил телескоп с тридцатидвухкратным увеличением и нашел четыре спутника Сатурна, горы на Луне, пятна на Солнце.
Исаак Ньютон – математик, механик, астроном, физик, создатель классической механики и всех законов Ньютона. Независимо от Лейбница открыл дифференциальное и интегральное исчисления, создал основы современной механики.
Перелистнем еще триста лет и попадем в XX век. Жаном Перреном установлено: молекула – наименьшая частица вещества, обладающая основными химическими связями. Атомы одинаковы на Земле и в космосе. Универсальность физических законов подтверждает единство природы и вселенной в целом.
Основной тенденцией современных наук является специализация по отдельным направлениям. Количество таких специальных наук достигло двухсот, причем в каждой из них своя система понятий и определений, своя терминология. Такое положение затрудняет дальнейшее развитие познания, поскольку много проблем имеют решение именно на стыке наук. Поэтому появляются «смешанные» науки: физическая химия, физическая география, биохимия, биофизика, радиоастрономия и т. д.
Очевидно, что исследования во всех научных направлениях будут продолжаться с той или иной интенсивностью, но среди них есть наиболее важные, без которых человечество не сможет существовать. Это энергетика и экология.
Зрелая наука в своем развитии последовательно проходит несколько этапов. Период нормальной науки сменяется периодом кризиса, который либо разрешается методами нормальной науки, либо приводит к научной революции, которая заменяет парадигму. С полной или частичной заменой парадигмы снова наступает период нормальной науки.
Согласно концепции Куна, развитие науки идет не путем плавного наращивания новых знаний на старые, а через смену ведущих представлений -- через периодически происходящие научные революции. Однако, действительного прогресса, связанного с возрастанием объективной истинности научных знаний, Кун не признает, полагая, что такие знания могут быть охарактеризованы лишь как более или менее эффективные для решения соответствующих задач, а не как истинные или ложные.
В этой связи следует отметить, что Кун не связывает явно смену парадигм с преемственностью в развитии науки, с движением по спирали от неполного знания к более полному и совершенному. По моему мнению, Кун опускает вопрос о качественном соотношении старой и новой парадигмы: является ли новая парадигма, пришедшая на смену старой, лучше с точки зрения прогресса в научном познании? Спираль развития зрелой науки у Куна не направлена вверх к высотам "абсолютной истины", она складывается стихийно в ходе исторического развития науки.
1.2. Нормальная наука
"Нормальной
наукой" Кун называет исследование,
прочно опирающееся на одно
или несколько прошлых научных
достижений, которые в течение
некоторого времени признаются
определенным научным
Нормальная наука не ставит своей целью создание новой теории, и успех в нормальном научном исследовании состоит не в этом. Исследование в нормальной науке направлено на разработку тех явлений и теорий, существование которых парадигма заведомо предполагает. Кратко деятельность ученых в рамках нормальной науки можно охарактеризовать как наведение порядка (ни в коем случае не революционным путем).
По мнению Куна, "три класса проблем -- установление значительных фактов, сопоставление фактов и теории, разработка теории -- исчерпывают ... поле нормальной науки, как эмпирической, так и теоретической". Подавляющее большинство проблем, поднятых даже самыми выдающимися учеными, обычно охватывается этими тремя категориями. Существуют также экстраординарные проблемы, но они возникают лишь в особых случаях, к которым приводит развитие нормального научного исследования. Работа в рамках парадигмы не может протекать иначе, а отказаться от парадигмы значило бы прекратить те научные исследования, которые она определяет. В случае отказа от парадигмы мы приходим к научной революции.
Понятие "нормальной науки", введенное Куном, подверглось острой критике сторонниками критического рационализма во главе с Карлом Поппером. Поппер согласен с тем, что нормальная наука существует, но если Куну этот феномен представляется как нормальный, то Поппер в работе "Нормальная наука и ее опасности" (1970) рассматривает его как опасный для науки в целом.
В
критике понимания Куном
Второе
направление в критике
Действительно, в понимании Куна "самая удивительная особенность проблем нормальной науки ... состоит в том, что они в очень малой степени ориентированы на крупные открытия, будь то открытие новых фактов или создание новой теории". Ученые в русле нормальной науки не ставят себе цели создания новых теорий, каких-то значительных качественных (революционных) преобразований в своей научной дисциплине. Для них результат научного исследования значителен уже потому, что он расширяет область применения парадигмы и уточняет некоторые параметры. Такие результаты, особенно в математике, могут быть предсказаны, но сам способ получения результата или доказательство остается в значительной мере сомнительным. Возникающие проблемы часто оказываются трудными для разрешения, хотя предшествующая практика нормальной науки дала все основания считать их решенными или почти решенными в силу существующей парадигмы. Завершение проблемы исследования требует решения всевозможных сложных инструментальных, концептуальных и математических задач-головоломок.
Таким образом, нормальная наука предстает у Куна как "решение головоломок". Ученый, который преуспеет в этом, становится специалистом своего рода по решению задач-головоломок, и стремление к разрешению все новых и новых задач-головоломок становится стимулом его дальнейшей активности, хотя он и не выходит за рамки нормальной науки. Среди главных мотивов, побуждающих к научному исследованию, можно назвать желание решить головоломку, которую до него не решал никто или в решении которой никто не добился убедительного успеха.
Как я уже обсуждал, работа в рамках парадигмы предполагает, что научное сообщество с приобретением парадигмы получает критерий для выбора проблем, которые могут считаться в принципе разрешимыми, пока эта парадигма является общепризнанной. В значительной степени ученые занимаются только теми проблемами, которые сообщество признает научными или заслуживающими внимания. Парадигма может даже изолировать научное сообщество от тех важных проблем, которые нельзя свести к типу головоломок, поскольку нельзя представить в терминах концептуального и инструментального аппарата, предполагаемого парадигмой. Такие проблемы иногда отбрасываются только потому, что они кажутся слишком сомнительными, чтобы тратить на них время. Одну из причин кажущегося прогресса в развитии нормальной науки Кун видит в том, что "ученые концентрируют внимание на проблемах, решению которых им может помешать только недостаток собственной изобретательности".