История астрономии: приближение к теории большого взрыва

Автор работы: Пользователь скрыл имя, 06 Декабря 2010 в 11:11, Не определен

Описание работы

Реферат

Файлы: 1 файл

реферат по ксе.docx

— 87.85 Кб (Скачать файл)

    Уже в августе того же 1632 года «Диалоги» были внесены в пресловутый «Индекс», нерадивого цензора уволили, книгу изъяли из продажи, а в октябре 69-летнего Галилея вызвали в Римскую инквизицию. Попытки тосканского герцога добиться отсрочки процесса ввиду плохого здоровья учёного и чумного карантина в Риме успеха не имели, и в феврале 1633 года Галилей вынужден был явиться в Рим.

    Процесс продолжался до июня 1633 года. По приговору, Галилей был признан виновным в том, что он поддерживал и распространял ложное, еретическое и противное Св. Писанию учение. Учёного заставили публично покаяться и отречься от «ереси». Затем его направили в тюрьму, но несколько дней спустя папа Урбан разрешил отпустить Галилея под надзор инквизиции. В декабре он вернулся на родину, в деревню близ Флоренции, где и провёл остаток жизни в режиме домашнего ареста.

    Законы Кеплера

    До  середины XVI века астрономические наблюдения в Европе были не слишком регулярными. Первым проводить систематические  наблюдения начал датский астроном Тихо Браге, используя специально для этого оборудованную обсерваторию Ураниборг в Дании (остров Вэн). Он соорудил крупные, уникальные для Европы инструменты, благодаря которым определял положение светил с небывалой ранее точностью. К этому времени не только «Альфонсинские», но и более новые «Прусские таблицы» давали большую ошибку. Для повышения точности Браге применял как технические усовершенствования, так и специальную методику нейтрализации погрешностей наблюдения.

    Браге первым измерил параллакс кометы (1577) и показал, что это не атмосферное, как полагали ранее (даже Галилей), а космическое тело. Тем самым он разрушил представление, разделяемое даже Коперником, о существовании планетных сфер — кометы явно двигались в свободном пространстве. Длину года он измерил с точностью до 1 секунды. В движении Луны он открыл два новых неравенства — вариацию и годичное уравнение, а также колебание наклона лунной орбиты к эклиптике. Браге составил уточнённый каталог для 1000 звёзд, с точностью 1'. Но главная заслуга Тихо Браге — непрерывная (ежедневная), в течение 15-20 лет, регистрация положения Солнца, Луны и планет. Для Марса, чьё движение самое неравномерное, накопились наблюдения за 16 лет, или 8 полных оборотов Марса.

    Браге был знаком с системой Коперника  ещё по «Малому комментарию», однако сразу указал на её недостатки — у звёзд нет параллакса, у Венеры не наблюдается смена фаз (телескопа тогда не было!) и др. Вместе с тем он оценил вычислительные удобства новой системы и в 1588 году предложил компромиссный вариант, близкий к «египетской модели» Гераклида: Земля неподвижна в пространстве, вращается вокруг оси, Луна и Солнце вращается вокруг неё, а прочие планеты — вокруг Солнца. Часть астрономов поддержала такой вариант.

    Проверить правильность своей модели Браге  не сумел из-за недостаточного знания математики, и поэтому, переехав в  Прагу по приглашению императора Рудольфа, пригласил туда (в 1600 году) молодого немецкого учёного Иоганна Кеплера. На следующий год Тихо Браге скончался, и Кеплер занял его место.

    Кеплера более привлекала система Коперника — как менее искусственная, более эстетичная и соответствующая той божественной «мировой гармонии», которую он усматривал во Вселенной. Используя наблюдения марсианской орбиты, выполненные Тихо Браге, Кеплер пытался подобрать форму орбиты и закон изменения скорости Марса, наилучшим образом согласующиеся с опытными данными. Он браковал одну модель за другой, пока, наконец, эта настойчивая работа не увенчалась первым успехом — были сформулированы два закона Кеплера:

  • Каждая планета описывает эллипс, в одном из фокусов которого находится Солнце.
  • Каждая планета движется в плоскости, проходящей через центр Солнца, причём заметаемая её радиус-вектором секторная площадь пропорциональна времени обращения.

    Второй  закон объясняет неравномерность  движения планеты: чем ближе она  к Солнцу, тем быстрее движется.

    Основные  идеи Кеплера он изложил в труде  «Новая астрономия, или физика неба» (1609), причём, осторожности ради, относил их только к Марсу. Позже в книге «Гармония мира» (1619) он распространил их на все планеты и сообщил, что открыл третий закон:

  • Квадраты времён обращения планет по орбите относятся как кубы их средних расстояний от Солнца.

    Этот  закон фактически устанавливает  скорость движения планет (второй закон  регулирует только изменение этой скорости) и позволяет их вычислить, если известна скорость одной из планет (например, Земли) и расстояния планет до Солнца.

    Кеплер  издал свои астрономические таблицы, посвящённые императору Рудольфу («Рудольфинские»).

    Через год после смерти Кеплера (1631) Гассенди наблюдал предсказанное им прохождение Меркурия по диску Солнца.

    Уже современники Кеплера убедились  в точности открытых им законов, хотя их глубинный смысл до Ньютона  оставался непонятным. Никаких серьёзных  попыток реанимировать Птолемея или предложить иную систему движения больше не было.

 

Другие открытия XVII века

 

    1612: открытие Туманности Андромеды. Семь лет спустя открыта туманность Ориона.

    1647: подробная карта Луны (Ян Гевелий).

    1655: Гюйгенс открывает спутник Сатурна Титан, а в следующем году — кольца Сатурна.

    1657: первое изложение системы Коперника на русском языке — Епифаний Славинецкий, «Зерцало всея Вселенныя»; эта книга представляла собой перевод «Введения в космографию» И. Блеу.

    1665: открытие на Юпитере Красного пятна (Кассини, Гук). Измерен период обращения Юпитера (а в 1666 году — и Марса) вокруг своей оси (Кассини).

    1666: вместе с Парижской Академией наук основана и Парижская обсерватория. Кассини становится первым директором этой обсерватории. Из его достижений на новом посту (совместно с Ж. Рише) — первое достаточно точное определение (1671—1673) параллакса Солнца (9.5") и астрономической единицы (140 млн км), открытие «щели Кассини» в кольце Сатурна (1675).

    1676: основана Гринвичская обсерватория (Флемстид). Эдмонд Галлей открывает «большое неравенство» Сатурна и Юпитера, а в 1693 году — вековое ускорение Луны. Объяснение этим явлениям через 100 лет дал Лаплас.

    В истории науки Галлей знаменит более  всего своими исследованиями комет. Обработав многолетние данные, он вычислил орбиты более 20 комет и  отметил, что несколько их появлений, в том числе комета 1682 года, относятся к одной и той же комете (названной его именем). Он назначил новый визит своей кометы на 1758 год, хотя самому Галлею не суждено было убедиться в точности своего предсказания.

    1687: Исаак Ньютон формулирует закон тяготения и выводит из него все 3 закона Кеплера. Другим важнейшим следствием теории Ньютона стало объяснение, почему орбиты небесных тел немного отклоняются от кеплеровского эллипса. Эти отклонения особенно заметны для Луны. Причиной является влияние других планет, а для Луны — также и Солнца. Учёт этого позволил Ньютону открыть в движении Луны новые отклонения (неравенства) — годичное, параллактическое, попятное движение узлов и др. Ньютон весьма точно вычислил величину прецессии (50" в год), выделив в ней солнечную и лунную составляющие.

    Ньютон  открыл причину хроматической аберрации, которую он ошибочно считал неустранимой; на самом деле, как позже выяснилось, применение нескольких линз в объективе может существенно ослабить этот эффект. Ньютон пошёл другим путём и изобрёл зеркальный телескоп-рефлектор; при небольшой величине он давал значительное увеличение и отличное чёткое изображение.

    XVIII век

 

    1718: Эдмонд Галлей обнаружил собственное движение звёзд (Сириус, Альдебаран и Арктур). Галлей также обратил внимание на «туманные звёзды», обсуждали их возможную структуру и причины свечения. Галлей составил их каталог, позже дополненный Дерхэмом; он включал около двух десятков туманностей.

    1727: Дж. Брэдли открыл годичную аберрацию (20,25"), и факт движения Земли получил прямое опытное подтверждение.

    Начали  появляться первые космогонические  гипотезы. Уильям Уистон предположил, что Земля первоначально была кометой, которая столкнулась с другой кометой, после чего Земля стала вращаться вокруг оси, и на ней появилась жизнь; книга Уистона «Новая теория Земли…» (англ. A New Theory of the Earth) получила одобрительные отзывы Исаака Ньютона и Джона Локка. Великий Жорж Бюффон тоже привлёк комету, но в его модели (1749) комета упала на Солнце и вышибла оттуда струю вещества, из которого и образовались планеты. Хотя возмущённая церковь заставила Бюффона письменно отречься от этой гипотезы, его трактат вызвал большой интерес и даже в 1778 году был переиздан. Катастрофические гипотезы появлялись и позднее (Фай, Чемберлин и Мультон, Джинс и Джеффрис).

    Чрезвычайно интересные мысли содержались в  книге Р. Бошковича «Теория натуральной философии, приведённая к единому закону сил, существующих в природе» (1758) — структурная бесконечность Вселенной, динамический атомизм, возможность сжатия или расширения Вселенной без изменения физических процессов в ней, существование взаимопроникающих, но взаимно ненаблюдаемых миров и др.

    1755: философ Иммануил Кант публикует первую теорию естественной космогонической эволюции (без катастроф). Звезды и планеты, по гипотезе Канта, образуются из скоплений диффузной материи: в центре, где материи больше, возникает звезда, а на окраинах — планеты. Математическую основу гипотезы позже разработал Лаплас.

    Английский  астроном-самоучка Томас Райт первым предположил, что Вселенная состоит  из отдельных «звёздных островов». Эти острова, согласно модели Райта, вращаются вокруг некоего «божественного центра» (он, впрочем, допускал, что  центров может быть более одного). Райт, а также Сведенборг и позже  Кант рассматривали туманности как  удалённые звёздные системы.

Информация о работе История астрономии: приближение к теории большого взрыва