Архитектуре промышленных зданий

Автор работы: Пользователь скрыл имя, 25 Января 2011 в 14:13, курсовая работа

Описание работы

Решение задач восстановления промышленного производства и дальнейшего развития страны теснейшим образом связано с наращиванием темпов электрофикации всех отраслей хозяйства России. Эта связь определяется прежде всего возможностью более широкого применения электроэнергии для интенсификации производства, осуществляемой за счет комплексной автоматизации, внедрение новых технологий, робототехнических устройств и манипуляторов, современной вычислительной техники, и такими важнейшими преимуществами электрической энергии, как:

а) огромные скорости протекания электромагнитных процессов;

б) возможность достаточно простого преобразования ее эксплуатационных параметров (напряжения, тока, частоты);

в) легкость автоматизации управления процессами потребления, транспортировки и производства электроэнергии;

г) возможность получения электрической энергии из механических, химической, атомной, тепловой, лучистой и др. видов энергии, а также осуществления обратных преобразований;

Файлы: 1 файл

Документ Microsoft Office Word.docx

— 140.35 Кб (Скачать файл)
  • РТЛ (резисторно-транзисторная логика)
  • ДТЛ (диодно-транзисторная логика)
  • ТТЛ (транзисторно-транзисторная логика)

 

Упрощённая схема  двухвходового элемента И-НЕ ТТЛ . 

     Обычно  входной каскад логических элементов  ТТЛ представляет собой простейшие компараторы, которые могут быть выполнены различными способами (на многоэмиттерном транзисторе или на диодной сборке). В логических элементах ТТЛ входной каскад, кроме функций компараторов, выполняет и логические функции. Далее следует выходной усилитель с двухтактным (двухключевым) выходом.

     В логических элементах КМОП входные  каскады также представляют собой  простейшие компараторы. Усилителями  являются КМОП-транзисторы. Логические функции выполняются комбинациями параллельно и последовательно включенных ключей, которые одновременно являются и выходными ключами.

   Транзисторы могут работать в инверсном режиме, но с меньшим коэффициентом усиления. Это свойство используются в ТТЛ многоэмиттерных транзисторах. При подаче на оба входа сигнала высокого уровня (1,1) первый транзистор оказывается включенным в инверсном режиме по схеме эмиттерного повторителя с высоким уровнем на базе, транзистор открывается и подключает базу второго транзистора к высокому уровню, ток идёт через первый транзистор в базу второго транзистора и открывает его. Второй транзистор «открыт», его сопротивление мало и на его коллекторе напряжение соответствует низкому уровню (0). Если хотя бы на одном из входов сигнал низкого уровня (0), то транзистор оказывается включенным по схеме с общим эмиттером, через базу первого транзистора на этот вход идёт ток, что открывает его и он закорачивает базу второго транзистора на землю, напряжение на базе второго транзистора мало и он «закрыт», выходное напряжение соответствует высокому уровню. Таким образом, таблица истинности соответствует функции 2И-НЕ.

  • ТТЛШ (то же с диодами Шоттки)

Для увеличения быстродействия логических элементов  в них используются транзисторы  Шоттки (транзисторы с диодами Шоттки), отличительной особенностью которых является применение в их конструкции выпрямляющего контакта металл-полупроводник вместо p-n перехода. При работе этих приборов отсутствует инжекция неосновных носителей и явления накопления и рассасывания заряда, что обеспечивает высокое быстродействие. Включение этих диодов параллельно коллекторному переходу блокирует насыщение выходных транзисторов, что увеличивает напряжения логических 0 и 1, но уменьшает потери времени на переключение логического элемента при том же потребляемом токе (или позволяет уменьшить потребляемый ток при сохранении стандартного быстродействия). Так, серия 74хх и серия 74LSxx имеют приблизительно равное быстродействие (в действительности, серия 74LSxx несколько быстрее), но потребляемый от источника питания ток меньше в 4-5 раз (во столько же раз меньше и входной ток логического элемента).

  • КМОП (логика на основе комплементарных ключей на МОП транзисторах)
  • ЭСЛ (эмиттерно-связанная логика)

Эта логика, иначе называемая логикой на переключателях тока, построена на базе биполярных транзисторов, объединённых в дифференциальные каскады. Один из входов обычно подключён  внутри микросхемы к источнику опорного (образцового) напряжения, примерно посредине  между логическими уровнями. Сумма  токов через транзисторы дифференциального  каскада постоянна, в зависимости  от логического уровня на входе изменяется лишь то, через какой из транзисторов течёт этот ток. В отличие от ТТЛ, транзисторы в ЭСЛ работают в  активном режиме и не входят в насыщение  или инверсный режим. Это приводит к тому, что быстродействие ЭСЛ-элемента при той же технологии (тех же характеристиках транзисторов) гораздо больше, чем ТТЛ-элемента, но больше и потребляемый ток. К тому же, разница между логическими уровнями у ЭСЛ-элемента намного меньше, чем у ТТЛ (меньше вольта), и, для приемлемой помехоустойчивости, приходится использовать отрицательное напряжение питания (а иногда и применять для выходных каскадов второе питание). Зато максимальные частоты переключения триггеров на ЭСЛ более, чем на порядок превышают возможности современных им ТТЛ, например, серия К500 обеспечивала частоты переключения 160-200 МГц, по сравнению с 10-15 МГц современной ей ТТЛ серии К155. В настоящее время и ТТЛ(Ш), и ЭСЛ практически не используются, так как с уменьшением проектных норм КМОП технология достигла частот переключения в несколько гигагерц.

     Триггер (триггерная система) — класс электронных устройств, обладающих способностью длительно находиться в одном из двух или более устойчивых состояний и чередовать их под воздействием внешних сигналов. Каждое состояние триггера легко распознаётся по значению выходного напряжения. По характеру действия триггеры относятся к импульсным устройствам — их активные элементы (транзисторы, лампы) работают в ключевом режиме, а смена состояний длится очень короткое время.

     Отличительной особенностью триггера как функционального  устройства является свойство запоминания  двоичной информации. Под памятью  триггера подразумевают способность  оставаться в одном из двух состояний  и после прекращения действия переключающего сигнала. Приняв одно из состояний за «1», а другое за «0», можно считать, что триггер хранит (помнит) один разряд числа, записанного  в двоичном коде.

     При изготовлении триггеров применяются  преимущественно полупроводниковые  приборы (обычно биполярные и полевые транзисторы), в прошлом — электромагнитные реле, электронные лампы. В настоящее время логические схемы, в том числе с использованием триггеров, создают в интегрированных средах разработки под различные программируемые логические интегральные схемы (ПЛИС). Используются, в основном, в вычислительной технике для организации компонентов вычислительных систем: регистров, счётчиков, процессоров, ОЗУ.

Триггер (бистабильный мультивибратор) — это цифровой автомат, имеющий несколько входов и 2 выхода.

Триггер — это устройство последовательного типа с двумя устойчивыми состояниями равновесия, предназначенное для записи и хранения информации. Под действием входных сигналов триггер может переключаться из одного устойчивого состояния в другое. При этом напряжение на его выходе скачкообразно изменяется.

Триггерами называют такие логические устройства, выходные сигналы которых определяются не только сигналами на входах, но и предысторией их работы, то есть состоянием элементов памяти.

Триггер — один из базовых (основных) элементов цифровой техники. Некоторые исследователи включают триггер в 100 великих изобретений.

Триггер не является логическим элементом первого уровня, а сам состоит из логических элементов первого уровня — инверторов или логических вентилей. По отношению к логическим элементам первого уровня триггер является логическим устройством второго уровня.

Триггер — элементарная ячейка оперативной памяти.

Триггер — простейшее устройство, выполняющее логическую функцию с обратной связью, то есть простейшее устройство кибернетики.

N-ичный триггер — устройство (элементарная переключаемая ячейка памяти, переключатель с N устойчивыми положениями), которое имеет N устойчивых состояний и возможность переключения из любого состояния в любое другое состояние.

Классификация

Рис. 3. Временная  диаграмма работы динамического  триггера

Рис. 4. Симметричные триггеры: а — с непосредственной связью между каскадами; б — с резистивной связью

Рис. 5. Функциональная классификация триггеров

Рис. 6. Классификация  триггеров по способу ввода информации 

     Триггеры  подразделяются на две большие группы — динамические и статические. Названы они так по способу представления выходной информации.

     Динамический  триггер представляет собой систему, одно из состояний которой (единичное) характеризуется наличием на выходе непрерывной последовательности импульсов  определённой частоты, а другое — отсутствием выходных импульсов (нулевое). Смена состояний производится внешними импульсами (рис. 3). Динамические триггеры в настоящее время используются редко.

     К статическим триггерам относят  устройства, каждое состояние которых  характеризуется неизменными уровнями выходного напряжения (выходными  потенциалами): высоким — близким к напряжению питания и низким — около нуля. Статические триггеры по способу представления выходной информации часто называют потенциальными.

     Статические (потенциальные) триггеры, в свою очередь, подразделяются на две неравные по практическому значению группы — симметричные и несимметричные триггеры. Оба класса реализуются на двухкаскадном усилителе с положительной обратной связью, а названием своим они обязаны способам организации внутренних электрических связей между элементами схемы.

Симметричные  триггеры отличает симметрия схемы  и по структуре, и по параметрам элементов  обоих плеч. Для несимметричных триггеров  характерна неидентичность параметров элементов отдельных каскадов, а также и связей между ними.

     Основной  и наиболее общий классификационный  признак — функциональный — позволяет систематизировать статические симметричные триггеры по способу организации логических связей между входами и выходами триггера в определённые дискретные моменты времени до и после появления входных сигналов. По этой классификации триггеры характеризуются числом логических входов и их функциональным назначением.

     Вторая  классификационная схема, независимая  от функциональной, характеризует триггеры по способу ввода информации и  оценивает их по времени обновления выходной информации относительно момента  смены информации на входах.

     Каждая  из систем классификации характеризует  триггеры по разным показателям и  поэтому дополняет одна другую. К  примеру, триггеры RS-типа могут быть в синхронном и асинхронном исполнении.

     Асинхронный триггер изменяет своё состояние  непосредственно в момент появления  соответствующего информационного  сигнала(ов), с некоторой задержкой равной сумме задержек на элементах составляющих данный триггер.

Синхронные  триггеры реагируют на информационные сигналы только при наличии соответствующего сигнала на так называемом входе  синхронизации С (от англ. clock). Этот вход также обозначают термином «такт». Такие информационные сигналы называют синхронными. Синхронные триггеры в свою очередь подразделяют на триггеры со статическим (статические) и динамическим (динамические) управлением по входу синхронизации С.

     Одноступенчатые триггеры состоят из одной ступени  представляющей собой элемент памяти и схему управления, делятся на триггеры со статическим управлением  и триггеры с динамическим управлением.

     Триггеры  со статическим управлением воспринимают информационные сигналы при подаче на вход С логической единицы (прямой вход) или логического нуля (инверсный вход).

Информация о работе Архитектуре промышленных зданий